• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists developed key principles for creating an artificial vessel

Bioengineer by Bioengineer
October 8, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers implanted a polymer scaffold as a vascular prosthesis into the rat abdominal aorta and monitored the process of its bioresobtion for 16 months.

IMAGE

Credit: Peter the Great St.Petersburg Polytechnic University

Researchers from St. Petersburg provided a unique experiment. They implanted a polymer scaffold as a vascular prosthesis into the rat abdominal aorta and monitored the process of its bioresobtion for 16 months. An artificial vessel was formed where the scaffold was located. It posess similar characteristics as a natural vessel. The scaffold itself showed high patency, biocompatibility and non-toxicity. The results were published in the Cell and Tissue Biology journal. This study brings scientists closer to the creation of an artificial tissue-engineered vascular graft.

The study was conducted by multidisciplinary team from Peter the Great St.Petersburg Polytechnic University (SPbPU), Pavlov First Saint Petersburg State Medical University and Institute of Macromolecular Compounds.

Coronary and peripheral artery bypass grafting is commonly used to relieve the symptoms of angina and other vascular deficiencies. Synthetic vascular prostheses perform reasonably satisfactorily in high-flow, low-resistance conditions such as the large peripheral arteries, but they are not as suitable for small calibre arterial reconstructions (e.g., coronary or lower leg circulation). They are prone to thrombus induction, embolism and occlusion.

Therefore it is desirable to develop a low-cost artificial blood vessel with no biocompatibility problems in order to overcome these problems.

“Synthetic prosthesis does not undergo remodeling in the child’s body, that’s why reoperations will be required. These is one of the reasons for creation of artificial vessels”, – said Vladimir Yudin, head of the Department “Polymeric materials for tissue engineering and transplantation” SPbPU.

The researchers developed the synthetic tubular scaffold from a biodegradable polymer – polylactic acid, which is normally found in the human body. It is also approved by the FDA (Food & Drug Association) for medical use. The scaffold gradually dissolves in the body, and a vessel appears in its place.

“The scaffold consists of nano- and microfibers, which are very similar to the fibrous structure of the natural vessel. Host cells successfully proliferate on such graft. We studied its mechanical strength, porosity, hydrophobicity. The scaffold is safe”, – added Pavel Popryadukhin, researcher of that department.

Surgical experiments were carried out at the Pavlov University. The scaffold was sewn into the rat aorta using microsurgical techniques. After 16 months the scaffold was completely dissolved. The artificial vessel looked very similar to the natural one. However, aneurysm formation in the reconstruction zone was noted.

“We also obtained positive results: scaffold safety was proved during the long-term experiments. The possibility of new tissues formation on the scaffold was also shown. The scaffold has been proven to be non-toxic with high patency rates – 93%. This is very high value, which suggests that while a new vessel is being formed, the scaffold will be patent, ” – mentioned Guriy Popov, cardiovascular surgeon of the Pavlov University.

The next step is to seed and cultivate cells, which is responsible for strength, on the scaffold prior operation. This will help to solve the problem of aneurysms at the implantation site.

###

Media Contact
Raisa Bestugina
[email protected]

Related Journal Article

http://dx.doi.org/10.1134/S1990519X20040082

Tags: CardiologyClinical TrialsMedicine/HealthMolecular PhysicsNanotechnology/MicromachinesPolymer ChemistrySurgeryTransplantation
Share12Tweet8Share2ShareShareShare2

Related Posts

Jingyuan Xu of KIT Honored with “For Women in Science” Sponsorship Award

Jingyuan Xu of KIT Honored with “For Women in Science” Sponsorship Award

September 26, 2025

Deep Learning Revolutionizes Multiscale Design of Porous Electrodes in Flow Cells

September 26, 2025

Cutting-Edge Insights into Light-Matter Interaction: Pioneering Research Drives Ultra-Fast Electronics Forward

September 26, 2025

The Importance of Advancing from Chiral Molecular Macrocycles to Chiral Topological Macrocycles

September 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    80 shares
    Share 32 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    55 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

InfEHR: Deep Geometric Learning Enhances Clinical Phenotyping

New Research Endorses Gene-Directed Radiation Therapy for HPV-Positive Throat Cancer

Solar Geomagnetic Storms Linked to Increased Heart Attack Risk in Women

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.