• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists capture for first time, light flashes from human eye during radiotherapy

Bioengineer by Bioengineer
January 7, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

What are the flashes of light patients report seeing during brain radiotherapy? Dartmouth scientists capture this phenomenon for the first time and provide an explanation.

IMAGE

Credit: Lesley Jarvis, MD, PhD


LEBANON, NH – For decades, theories have existed to explain patient reports of seeing light flashes during radiation therapy, even with their eyes closed. However, no one has been able to secure evidence of this sensation in humans to prove their theory. A team of researchers at Dartmouth’s and Dartmouth-Hitchcock’s Norris Cotton Cancer Center led by radiation oncologist Lesley Jarvis, MD, PhD and Irwin Tendler, MEng, have collected real-time data to show that during head and neck radiation therapy, enough light is produced inside the eye to elicit such a visual sensation. This evidence, and their explanation of it, “Experimentally Observed Cherenkov Light Generation in the Eye During Radiation Therapy,” is newly published in The Red Journal (International Journal of Radiation Oncology, Biology, & Physics).

“Overall, the idea of imaging light emission from humans undergoing radiotherapy is novel and was also first suggested and developed at Dartmouth,” says Tendler. “Our newest data is exciting because for the first time, light emission from the eye of a patient undergoing radiotherapy was captured. This data is also the first instance of evidence directly supporting that there is enough light produced inside the eye to cause a visual sensation and that this light resembles Cherenkov emission.”

Light emission from the eye is very subtle, hard to detect, and likely why no one has been able to record evidence of this phenomenon. To accomplish this, the team leveraged special technology called the CDose camera imaging system, an engineering innovation manufactured by Dartmouth spin-off company, DoseOptics, LLC. The camera provides live views of light emission from biological systems (animal and human) during radiotherapy. “As the radiation beam passes through the eye, light is generated within the vitreous fluid. Our real-time data rigorously showed that the amount of light produced is sufficient to elicit a visual sensation–a topic that has been debated in the literature,” explains Tendler. “By analyzing the spectral composition, we also show that this emission can be classified as Cherenkov light–again, another contested point in the literature.”

The benefits of the team’s finding to cancer treatment are several-fold:

  • The imaging technique could be used to monitor light emission from the eye during radiotherapy and directly determine whether radiation transects the eye. “In the case that the eye is a target, the method could provide confirmation of beam delivery; in the case that this is unintentional, it can provide evidence of an error or near miss – as a safety check,” says Tendler.

  • The ability to provide the patient with a valid explanation of this phenomenon can help relieve treatment-related anxiety.

  • “Published work has shown that if a patient doesn’t see light flashes during radiotherapy, there is a higher chance of expecting vision loss after irradiation,” says Tendler. The method could help determine if any light was actually generated to potentially relate this to predicted vision loss as well as provide information about long-term visual outcome following radiotherapy.

    The team’s next steps are to correlate how recorded ocular Cherenkov light and delivered dose can provide information about long-term visual outcome, and to develop the tool to use in prediction and measurement of eye dose.

    ###

    Irwin Tendler, MEng, is a biomedical engineering and medical physics PhD candidate at Dartmouth’s Thayer School of Engineering studying under Drs. David Gladstone, Brian Pogue, and Lesley Jarvis. His research interests include development of optical imaging-based medical devices to improve safety and efficacy of radiotherapy.

    Lesley Jarvis, MD, PhD, is a radiation oncologist and member of the Translational Engineering in Cancer research program at Dartmouth’s and Dartmouth-Hitchcock’s Norris Cotton Cancer Center, and Associate Professor of Medicine at Dartmouth’s Geisel School of Medicine.

    About Norris Cotton Cancer Center at Dartmouth-Hitchcock

    Norris Cotton Cancer Center combines advanced cancer research at Dartmouth’s Geisel School of Medicine with patient-centered cancer care provided at Dartmouth-Hitchcock Medical Center in Lebanon, NH, at Dartmouth-Hitchcock regional locations in Manchester, Nashua and Keene, NH, and St. Johnsbury, VT, and at partner hospitals throughout New Hampshire and Vermont. It is one of 51 centers nationwide to earn the National Cancer Institute’s “Comprehensive Cancer Center” designation. Learn more about Norris Cotton Cancer Center research, programs, and clinical trials online at cancer.dartmouth.edu.

Media Contact
Jaime Peyton, Director of Communications
[email protected]
603-653-1978

Related Journal Article

http://dx.doi.org/10.1016/j.ijrobp.2019.10.031

Tags: Biomechanics/BiophysicsBiotechnologycancerHardwareMedicine/HealthneurobiologyNeurochemistryOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Al–Salen Catalyst Powers Enantioselective Photocyclization

Al–Salen Catalyst Powers Enantioselective Photocyclization

August 9, 2025
Bacterial Enzyme Powers ATP-Driven Protein C-Terminus Modification

Bacterial Enzyme Powers ATP-Driven Protein C-Terminus Modification

August 9, 2025

Machine-Learned Model Maps Protein Landscapes Efficiently

August 9, 2025

High-Definition Simulations Reveal New Class of Protein Misfolding

August 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    137 shares
    Share 55 Tweet 34
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Al–Salen Catalyst Powers Enantioselective Photocyclization

Emergency Transport’s Effect on Pediatric Cardiac Arrest

Bioinformatics Uncovers Biomarkers for Childhood Lupus Nephritis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.