• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, August 11, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Scientists at ORNL employ digital esophagus to battle Barrett’s

Bioengineer by Bioengineer
November 12, 2021
in Cancer
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team including researchers from the Department of Energy’s Oak Ridge National Laboratory has developed a digital tool to better monitor a condition known as Barrett’s esophagus, which affects more than 3 million people in the United States. Barrett’s occurs when the mucosal lining of the lower esophagus deteriorates, altering its cellular structure, and is most common in those with chronic acid reflux.  

Barrett's esophagus image

Credit: National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health

A team including researchers from the Department of Energy’s Oak Ridge National Laboratory has developed a digital tool to better monitor a condition known as Barrett’s esophagus, which affects more than 3 million people in the United States. Barrett’s occurs when the mucosal lining of the lower esophagus deteriorates, altering its cellular structure, and is most common in those with chronic acid reflux.  

Barrett’s is considered a premalignant condition because it’s a common precursor to esophageal cancer, so monitoring patients is critical. However, the current paradigm for tracking the progress of the disease, known as the Seattle protocol, is invasive, expensive and potentially ineffective.

Per the protocol, Barrett’s patients must have their esophagus poked with forceps every few months, an uncomfortable experience that only captures a small percentage of the affected tissue, meaning that despite the invasive procedure problematic tissues can remain undetected.

A research team set out to test the effectiveness of the Seattle protocol by constructing a computational model to represent the human esophagus, using real-world data across a large population of tissues.

The team, which also included researchers from Columbia University’s Irving Medical Center, Mount Sinai’s Icahn School of Medicine and Massachusetts General Hospital’s Institute for Technology Assessment, published their results in the journal Simulation.

“The ultimate goal was to strike a balance between physically poking a patient and how often you find something that may be concerning,” said Jim Nutaro, leader for  computational systems engineering at ORNL and a researcher on the project. “It reproduces historical data, and cancers that surface in the simulations are analogous to the real world. These are virtual patients, and we can poke them as much as we want.”

The team’s end goal is to minimize the invasiveness of tracking the condition and, by extension, reduce deaths from esophageal cancer by providing a testbed for potential future monitoring regimes.

To examine their digital patients, the researchers first needed to construct a digital esophagus via a computational model. The team drew input data for Barrett’s onset and death ages from an actual 1960s cohort and validated the resulting model with real-world data such as detection rates and population statistics.

“It’s classic model construction and development,” said Nutaro.

The model was then complemented with simulations of millions of various types of tissues constructed using real-world data, a computationally expensive process that was only possible via parallelization across multicore servers.

“The optimization routine is designed to work on parallel computing platforms and benefits from multicore parallelization to facilitate model calibration in a feasible amount of time,” the researchers wrote.

It’s a task well within ORNL’s wheelhouse, as the laboratory is currently home to the nation’s fastest computer, Summit, and hundreds of researchers such as Nutaro and his colleague, ORNL staff scientist and team member Ozgur Ozmen, who work daily to employ such resources in tackling the most complex scientific challenges of our time.

The team’s model is in the public domain, available to those who can apply it to the physical treatment of Barrett’s patients.

In the near term the researchers are looking to apply it to studying variations in the detection of Barrett’s across different timescales and tissue areas. Ultimately, they would like to find partners in the medical community that could use their findings to develop a new protocol and, by extension, improve the lives and life expectancies of patients with Barrett’s esophagus.

“We can share the model and work with them to further refine current practices,” said Ozmen. “In other words, we can help to optimize future protocols.”

The work began as part of a collaboration between DOE and the National Cancer Institute known as the Joint Design of Advanced Computing Solutions for Cancer, or JDACS4C, in 2017. After establishing the relationship under the JDACS4C umbrella, the collaboration continued independent of the DOE/NCI effort.

UT-Battelle manages ORNL for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit energy.gov/science.



Journal

SIMULATION

DOI

10.1177/00375497211040074

Method of Research

Data/statistical analysis

Subject of Research

Not applicable

Article Title

Tissue scale agent-based simulation of premalignant progressions in Barrett’s esophagus

Article Publication Date

21-Aug-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

Cover, JNCCN August 2022

There’s a better way to detect high-risk medications in older adults with cancer according to new study in JNCCN

August 10, 2022
Masri and team

New UCI-led research reveals the circadian clock influences cell growth, metabolism and tumor progression

August 10, 2022

Declines in opioid prescriptions for U.S. patients with cancer and non-cancer pain, study shows

August 10, 2022

Study shows annual screening before age 50 leads to lower proportions of advanced breast cancer

August 10, 2022

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    66 shares
    Share 26 Tweet 17
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirologyViolence/CriminalsWeather/StormsVehiclesUniversity of WashingtonUrogenital SystemUrbanizationZoology/Veterinary ScienceVaccineVaccinesWeaponryVirus

Recent Posts

  • Interactive map of metabolical synthesis of chemicals​
  • NASA’s Fermi confirms star wreck as source of extreme cosmic particles
  • CityU material scientists discover a new mechanism to increase the strength and ductility of high-entropy alloys
  • Hubble sees supergiant Betelgeuse slowly recovering after blowing its top
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In