• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Science snapshots from Berkeley Lab: 3D nanoparticles and magnetic spin

Bioengineer by Bioengineer
April 9, 2020
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists capture 3D images of nanoparticles, atom by atom, with unprecedented precision

IMAGE

Credit: Courtesy of IBS

Since their invention in the 1930s, electron microscopes have helped scientists peer into the atomic structure of ordinary materials like steel, and even exotic graphene. But despite these advances, such imaging techniques cannot precisely map out the 3D atomic structure of materials in a liquid solution, such as a catalyst in a hydrogen fuel cell, or the electrolytes in your car’s battery.

Now, researchers at Berkeley Lab, in collaboration with the Institute for Basic Science in South Korea, Monash University in Australia, and UC Berkeley, have developed a technique that produces atomic-scale 3D images of nanoparticles tumbling in liquid between sheets of graphene, the thinnest material possible. Their findings were reported April 2 in the journal Science.

“This is an exciting result. We can now measure atomic positions in three dimensions down to a precision six times smaller than hydrogen, the smallest atom,” said study co-author Peter Ercius, a staff scientist at Berkeley Lab’s Molecular Foundry.

The technique, called 3D SINGLE (Structure Identification of Nanoparticles by Graphene Liquid cell Electron microscopy), employs one of the world’s most powerful microscopes at Berkeley Lab’s Molecular Foundry. The researchers captured thousands of images of eight platinum nanoparticles “trapped” in liquid between two graphene sheets – called a “graphene window.”

These graphene sheets – each one just an atom thick – are “strong enough to contain tiny pockets of liquid necessary to acquire high-quality images of the nanoparticles’ atomic arrangement,” Ercius explained.

The researchers then adapted computer algorithms originally designed for biological studies to combine many 2D images into atomic-resolution 3D images.

The achievement, which improves upon a technique first reported in 2015, marks a significant milestone for the researchers. “With 3D SINGLE, we can determine why such small nanoparticles are more efficient catalysts than larger ones in fuel cells and hydrogen vehicles,” Ercius said.

Fine-Tuning Magnetic Spin for Faster, Smaller Memory Devices

Unlike the magnetic materials used to make a typical memory device, antiferromagnets won’t stick to your fridge. That’s because the magnetic spins in antiferromagnets are oppositely aligned and cancel each other out.

Scientists have long theorized that antiferromagnets have potential as materials for ultrafast stable memories. But no one could figure out how to manipulate their magnetization to read and write information in a memory device.

Now, a team of researchers at Berkeley Lab and UC Berkeley working in the Center for Novel Pathways to Quantum Coherence in Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, have developed an antiferromagnetic switch for computer memory and processing applications. Their findings, published in the journal Nature Materials, have implications for further miniaturizing computing devices and personal electronics without loss of performance.

Using a focused ion beam instrument at Berkeley Lab’s Molecular Foundry, the scientists – led by James Analytis, a faculty scientist in Berkeley Lab’s Materials Sciences Division and associate professor and Kittel Chair of Condensed Matter Physics at UC Berkeley – fabricated the device from atomically thin sheets of niobium disulfide, a transition metal dichalcogenide (TMD). To form an antiferromagnetic TMD, they synthesized layers of iron atoms between each niobium disulfide sheet.

Study co-authors Nityan Nair and Eran Maniv discovered that applying small pulses of electrical current rotates the spins of the antiferromagnet, which in turn switches the material’s resistance from high to low.

To their surprise, they also found that “these magnetic spins can be flipped or manipulated with small applied currents, around 100 times smaller than those used in any other materials with a similar response,” said Analytis.

The researchers next plan to test different antiferromagnetic TMDs in the hope of identifying a system that operates at room temperature and thus further develop the field of spin-based electronics or spintronics, where information is transported by the electrons’ magnetic spin.

###

Additional information:

  • “3D Reconstructions of Individual Nanoparticles (https://www.ibs.re.kr/cop/bbs/BBSMSTR_000000000738/selectBoardArticle.do?nttId=18295),” news release, Institute for Basic Science
  • “A Most Singular Nano-Imaging Technique (https://newscenter.lbl.gov/2015/07/16/single/),” news release, Lawrence Berkeley National Laboratory (Berkeley Lab)
  • “Transition Metal Dichalcogenides to the Rescue,” Nature Reviews Materials (https://www.nature.com/articles/s41578-019-0163-7)

– By Theresa Duque

Media Contact
Laurel Kellner
[email protected]

Original Source

https://newscenter.lbl.gov/2020/04/09/3d-nanoparticles-atom-by-atom/

Related Journal Article

http://dx.doi.org/10.1126/science.aax3233

Tags: Atomic PhysicsChemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsMaterialsNanotechnology/MicromachinesSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025
Photoswitchable Olefins Enable Controlled Polymerization

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025

Iridium Catalysis Enables Piperidine Synthesis from Pyridines

December 3, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Validating Stress and Eating in LGBTQ+ Individuals

Inherent Variability Challenges Parkinson’s Transcriptomics Reliability

Impact of Context and Experience on Nurses’ Medications

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.