• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Salmon get a major athletic boost via a single enzyme

Bioengineer by Bioengineer
June 4, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The findings, published in the Proceedings of the Royal Society B, help explain how the fish undertake arduous upstream migrations, and could help species acclimate to elevated water temperatures associated with climate change

IMAGE

Credit: US Fish and Wildlife Service – Northeast Region: Wikimedia Commons.

Salmon species, known for undertaking arduous upstream migrations, appear to owe a good deal of their athletic ability to the presence of a single enzyme.

New research indicates that plasma-accessible carbonic anhydrase (paCA)–an enzyme anchored to the walls of salmons’ blood vessels–helps reduce how hard their hearts have to work during exercise by up to 27 per cent.

“Salmon species get one shot at reproduction, and we know cardiovascular performance can be a limiting factor during migration,” says zoologist Till Harter, who led the study while a researcher at the University of British Columbia (UBC).

“It appears paCA plays a key role in enhancing the animal’s ability to extract oxygen from their blood, making salmon great aerobic athletes and giving them a much-needed edge during migration.”

The researchers also found the paCA enzyme kicked in when the fish were exposed to low water oxygen levels–hypoxia–and helped the salmon recover faster from exercise.

“Like hypoxia, increases in water temperature are also thought to limit aerobic performance,” says UBC researcher Colin Brauner, senior author on the paper.

“If elevated temperature recruits paCA like hypoxia does, there may be levels at which fish can acclimate and be better prepared to deal with elevated temperatures associated with climate change.”

Working with Kurt Gamperl and other collaborators at the Memorial University of Newfoundland, the team placed Atlantic Salmon in swim tunnels with adjustable water flow–basically creating a treadmill for fish. They then inhibited the function of paCA in some fish, and measured the enzyme’s impact on cardiovascular function. In some instances, Atlantic Salmon were unable to swim against strong water flow altogether when paCA was inhibited.

The study–published in the Proceedings of the Royal Society B–is the first to measure the role of paCA during exercise in fish, and the first to assess it in free-swimming animals.

While focused on Atlantic salmon, the results may also apply to other salmonids (including Pacific salmon) and even more broadly to teleosts (bony fishes).

“Whether other teleosts species also take advantage of this mechanism still needs to be formally tested,” says Harter, now with the Scripps Institution of Oceanography at the University of California San Diego.

“But if substantiated by future work, the implications could be tremendous–teleosts make up nearly half of all vertebrate species and the vast majority of fish species.”

###

Media Contact
Chirs Balma
[email protected]

Original Source

https://science.ubc.ca/news/salmon-get-major-athletic-boost-single-enzyme

Tags: BiodiversityBiologyCell BiologyClimate ChangeDevelopmental/Reproductive BiologyEcology/EnvironmentEvolutionFisheries/AquacultureMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Unlocking an 180-Year-Old Mystery: The Link Between Metabolism and Cell Growth

Unlocking an 180-Year-Old Mystery: The Link Between Metabolism and Cell Growth

November 11, 2025
blank

The Origin of Motion: Nature’s First Motor from Billions of Years Ago

November 11, 2025

Unraveling Wheat Resistance Mechanisms to Fusarium Crown Rot

November 11, 2025

Discovery of the Key Sex-Determination Gene in Bees and Ants Unveiled

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Commiphora myrrha Extract Fights Colorectal Cancer Metastasis

Identifying Pressure Injury Risks in Elderly Patients

Student Initiative Aims to Curb Medicaid Disenrollment

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.