• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Saarbruecken chemists develop variety of industrially important synthetic process

Bioengineer by Bioengineer
March 2, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Saarland University/Oliver Dietze

The formation of double bonds between two carbon atoms (C=C) is of central significance in natural organisms. The vast majority of natural substances therefore contain one or more of these double bonds. Compounds with C=C double bonds, the alkenes or olefins, also play a prominent role in the organic chemical industry. A great many chemical processes have therefore been developed over the years to control the formation of C=C bonds.

One such process, olefin metathesis, has received particular attention over the last few decades and the 2005 Nobel Prize for Chemistry was awarded in recognition of its significance.

Despite the many parallels between carbon and the heavier members of the carbon group (Group 14) of the periodic table, olefin metathesis was only of practical significance when compounds containing C=C bonds were involved. This seems somewhat surprising given the fact that double bonds between the heavier elements of the carbon group are considerably weaker than a C=C bond and are thus more easily cleaved.

David Scheschkewitz, Professor of Inorganic and General Chemistry at Saarland University, Lukas Klemmer and Anna-Lena Thömmes from his research group and Volker Huch and Bernd Morgenstern from the X-ray Diffraction Service Centre have developed and characterized a new class of germanium-based heavier alkene analogues whose Ge=Ge bond exhibits just the right degree of stability to participate in synthetically useful metathesis reactions.

The Scheschkewitz group employed the new methodology to synthesize the first long-chain polymers containing double bonds between heavier elements. In the near future, the researchers hope to extend the concept to other elements of the periodic table, which could be of potential use in developing novel materials for applications in the field of organic electronics. ‘The underlying principle is simple and could also be applied in organic chemistry,’ explains Professor Scheschkewitz.

Potentially, this could also provide a means of carrying out olefin metathesis reactions without the precious-metal catalysts needed in the traditional approach.

###

Scheschkewitz group website:
https://www.uni-saarland.de/lehrstuhl/scheschkewitz.html

Klemmer, L., Thoemmes, AL., Zimmer, M. et al. Metathesis of Ge=Ge double bonds. Nat. Chem. (2021).
https://doi.org/10.1038/s41557-021-00639-9

Media Contact
Prof. Dr. David Scheschkewitz
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41557-021-00639-9

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

O-GlcNAc Transferase Drives Lumbar Joint Degeneration

October 17, 2025
blank

Fatigued Hip Abductors Impact Biomechanics in Single-Leg Landings

October 17, 2025

Genotype-Environment Interactions in Pejerrey Sex Differentiation

October 17, 2025

Cancer Cells Harness Embryonic Gene Editors to Drive Tumor Growth

October 17, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1254 shares
    Share 501 Tweet 313
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

O-GlcNAc Transferase Drives Lumbar Joint Degeneration

Fatigued Hip Abductors Impact Biomechanics in Single-Leg Landings

Genotype-Environment Interactions in Pejerrey Sex Differentiation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.