• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Russian chemists proposed a new design of flow batteries

Bioengineer by Bioengineer
August 18, 2020
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The new design allows not only to reduce the cost of experiments, but also increases the power of vanadium batteries

IMAGE

Credit: Image courtesy of study authors.

In 2020 China plans to launch the largest battery complex in the world with a capacity of 800 MW*h (approximately this amount of energy per year is consumed by a household with 200 apartments). This complex is based not on the usual lithium-ion or lead-acid batteries, but on the redox flow battery where the electricity is stored in the form of chemical energy of solutions – electrolytes. Battery consists of two tanks in which electrolytes are stored and membrane-electrode assembly (MEA) – solutions are supplied to MEA by pumps where they undergo electrochemical reactions which provide charging and discharging of the battery.

Due to this setup, redox flow batteries, unlike many other energy storage devices, enable independent scaling of power and capacity of the battery, which are determined by the size of MEA and electrolyte volume, respectively. In addition, redox flow batteries exhibit minimal self-discharge over extended periods and their electrolytes do not degrade even after tens of thousands of operating cycles, making them promising candidates for storing large amounts of energy in the smart power grids. For example, they can store excess electricity generated by photovoltaic solar cells during daylight and generate back-up electricity at night or in cloudy weather.

“Flow batteries are being actively integrated into the power grids of China, Germany and other countries, on one hand, and on the other hand, are continued to be developed and refined in laboratories”, comments one of the authors of the work, researcher at the NTI Competence Center at IPCP RAS, Dmitry Konev. “We have proposed a completely new design of MEA, which will facilitate the research process and greatly reduce entrance threshold for new research groups into this area. In the future, this will help to achieve significant progress and will bring distributed energy resources from niche positioning to very high level of commercialization, including in Russia”.

Sandwich with laser filling

The MEA is the heart of the flow battery. It looks like a sandwich of different sheets materials, divided into two symmetrical parts supplied with its own electrolyte. When the battery is connected to a power supply, the one electrolyte is oxidized, while another is reducing and so the battery is charging. After that, the power source can be disconnected and replaced with energy consumer – the electrolytes will undergo reverse processes and the battery will begin to discharge.

An important part of the MEA is the flow field plates, sandwich layers through which the electrolyte is pumped to the electrodes where the electrolytes are oxidized or reduced. The performance of the battery, i.e. power and efficiency, depend strongly on how well the flow fields are organized. Therefore, researchers often select different types of fields to optimize battery performance, but now this is a very labor-intensive task: flow fields are milled in dense graphite plates, which is time-consuming procedure. Russian researchers have proposed a different approach.

“We form flow fields by using several thin layers of flexible graphite materials: the necessary patterns in them are cutted by a laser and then these layers are superimposed on each other to get the required field”, says the first author of the work, researcher at Mendeleev Univeristy, Roman Pichugov. “The procedure to create flow fields takes only a few minutes, which is much less than traditional milling of graphite. Plus, cheaper materials are used, and as a result, there is more scope for variation and selection of flow fields.”

From cell to stack

Flow batteries can operate with different types of electrolytes. The most common (including those that are installed in China and are being introduced in other countries) utilize vanadium electrolytes, namely solutions of vanadium salts. Exactly on this electrolyte Russian scientists tested their cell design. They sorted out various types of flow fields, varied the electrolyte flow rate and obtained results that on a qualitative level coincide with the best world studies and on a quantitative level even slightly surpass them: the power of tested MEA slightly exceeded the power of similar cells on graphite.

Thus, the new design of MEA is greatly simplifying laboratory test and in the future can be used in real energy storage systems for distributed power grids. Now Russian scientists in collaboration with InEnergy LLC are developing and testing a vanadium flow battery composed of 10 such cells with a total power of 20 watts. The construction of the cell itself and the stack of 10 cells are protected by patents, the last of which belongs to ADARM company, created by the employees of MUCTR. In addition, scientists develop other types of flow batteries utilizing different electrolytes on the basis of the proposed design of MEA.

###

Mendeleev University is a flagship university of the chemical industry in Russia, whose work is aimed not only at obtaining new knowledge, but also at introducing them into industry. The study was carried out by employees of the laboratory EMEE of the Mendeleev University, NTI Competence Center at IPCP RAS, IPCE RAS and Lomonosov Moscow State University.

Article: R.D. Pichugov et al, Electrolyte Flow Field Variation: A Cell for Testing and Optimization of Membrane Electrode Assembly for Vanadium Redox Flow Batteries, ChemPlusChem, 2020. DOI: 10.1002/cplu.202000519

Media Contact
Georgiy Shakhgildyan
[email protected]

Original Source

https://drive.google.com/drive/folders/1tU7AV5KV6_JCSJg9P2fyemZTwgUDRvau?usp=sharing

Related Journal Article

http://dx.doi.org/10.1002/cplu.202000519

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterialsResearch/DevelopmentTechnology Transfer
Share12Tweet8Share2ShareShareShare2

Related Posts

Neighboring Groups Speed Up Polymer Self-Deconstruction

Neighboring Groups Speed Up Polymer Self-Deconstruction

November 28, 2025
blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Probiotics Boost Anti-Cancer Signaling Against H. pylori

Continuous Electrocardiographic Index Reveals Sex Differences

Mapping Metabolomics in Oral Cancer Progression

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.