• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Robotic muscles could turn back body clock by 2050

Bioengineer by Bioengineer
September 8, 2020
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jonathan Rossiter, University of Bristol

Loss of strength and muscle wastage is currently an unavoidable part of getting older and has a significant impact on health and quality of life.

Sarcopenia, as it’s known medically, is responsible for a large number of health problems and body function disorders, and is brought about by ageing, stroke, trauma and degenerative diseases. Current treatments are predominantly based on external devices such as orthoses and rigid exoskeletons, but these can cause tissue damage and are limited in use.

emPOWER is a visionary project, led by Jonathan Rossiter, Professor of Robotics at the University of Bristol, in partnership with Imperial College, UCL and the NIHR Devices for Dignity MedTech Co-operative, hosted by Sheffield Teaching Hospitals Foundation Trust. The project will explore how artificial muscles could radically transform treatment options in the future and effectively turn back the body clock.

“We are working on the principle that implanting robotic, artificial muscles to replace or work alongside our own muscles, can restore natural body function and help us all to live longer, more comfortable and active lives.

“emPOWER implantable muscles must work seamlessly with the body. They must be biocompatible, integrate smoothly and strongly with natural bone and tissue, and coordinate intelligently with the patient’s own movements and muscle actions,” said Professor Rossiter.

To deliver this level of sophistication, the emPOWER project is a multi-disciplinary team of 30 researchers across the fields of soft robotics, materials science, bioengineering, chemistry, ethics, healthcare regulation and medicine.

“Together the emPOWER team will deliver a system of implantable muscles that receive their energy from outside the body, for example from a small power pack, and which communicate directly with the nervous system for control and sensing.

“This is truly a project for 2050 and beyond, taking an adventurous approach that leap-frogs current state-of-the-art research. There is considerable work to be done but we confidently expect to see emPOWER artificial muscles in clinical use before 2050.”

###

The project is funded by the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation, through its Transformative Healthcare Technologies for 2050.

Further information:

Bristol Robotics Laboratory (BRL) is the most comprehensive academic centre for multi-disciplinary robotics research in the UK. It is a collaborative partnership between the University of the West of England (UWE Bristol) and the University of Bristol, and home to a vibrant community of over 300 academics, researchers and industry practitioners.

UKRI EPSRC Transformative Healthcare Technologies for 2050

The aim of this funding is to foster the development of revolutionary new technological approaches to transform care and treatments in the NHS by 2050, demonstrating the importance of engineering and the physical sciences to transforming future healthcare provision.

Media Contact
Victoria Tagg
[email protected]

Original Source

https://www.bristol.ac.uk/news/2020/september/health-2050.html

Tags: AgingBiomedical/Environmental/Chemical EngineeringBiotechnologyGerontologyMedicine/HealthResearch/DevelopmentRobotry/Artificial IntelligenceStrokeTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Uranium Complex Converts Dinitrogen to Ammonia Catalytically

Uranium Complex Converts Dinitrogen to Ammonia Catalytically

August 10, 2025
blank

Kombucha’s Pharmaceutical Potential: Production, Patents, Challenges

August 10, 2025

Enhancing Lithium Storage in Zn3Mo2O9 with Carbon Coating

August 10, 2025

Surfactants and Oils Shape Emulsion Ripening Rates

August 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    138 shares
    Share 55 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    56 shares
    Share 22 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Uranium Complex Converts Dinitrogen to Ammonia Catalytically

Kombucha’s Pharmaceutical Potential: Production, Patents, Challenges

Enhancing Lithium Storage in Zn3Mo2O9 with Carbon Coating

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.