• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, March 1, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Robot jaws shows medicated chewing gum could be the future

Bioengineer by Bioengineer
July 14, 2020
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dr Kazem Alemzadeh, University of Bristol

Medicated chewing gum has been recognised as a new advanced drug delivery method but currently there is no gold standard for testing drug release from chewing gum in vitro. New research has shown a chewing robot with built-in humanoid jaws could provide opportunities for pharmaceutical companies to develop medicated chewing gum.

The aim of the University of Bristol study, published in IEEE Transactions on Biomedical Engineering, was to confirm whether a humanoid chewing robot could assess medicated chewing gum. The robot is capable of closely replicating the human chewing motion in a closed environment. It features artificial saliva and allows the release of xylitol the gum to be measured.

The study wanted to compare the amount of xylitol remaining in the gum between the chewing robot and human participants. The research team also wanted to assess the amount of xylitol released from chewing the gum.

The researchers found the chewing robot demonstrated a similar release rate of xylitol as human participants. The greatest release of xylitol occurred during the first five minutes of chewing and after 20 minutes of chewing only a low amount of xylitol remained in the gum bolus, irrespective of the chewing method used.

Saliva and artificial saliva solutions respectively were collected after five, ten, 15 and 20 minutes of continuous chewing and the amount of xylitol released from the chewing gum established.

Dr Kazem Alemzadeh, Senior Lecturer in the Department of Mechanical Engineering, who led the research, said: “Bioengineering has been used to create an artificial oral environment that closely mimics that found in humans.

“Our research has shown the chewing robot gives pharmaceutical companies the opportunity to investigate medicated chewing gum, with reduced patient exposure and lower costs using this new method.”

Nicola West, Professor in Restorative Dentistry in the Bristol Dental School and co-author, added: “The most convenient drug administration route to patients is through oral delivery methods. This research, utilising a novel humanoid artificial oral environment, has the potential to revolutionise investigation into oral drug release and delivery.”

###

Media Contact
Joanne Fryer, University of Bristol
[email protected]

Related Journal Article

http://dx.doi.org/10.1109/TBME.2020.3005863

Tags: Dentistry/Periodontal DiseaseMechanical EngineeringMedicine/HealthPharmaceutical Science
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Boston College physicist Brian Zhou receives NSF CAREER Award

March 1, 2021
IMAGE

Sensing suns

February 28, 2021

Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI

February 27, 2021

When foams collapse (and when they don’t)

February 27, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    647 shares
    Share 259 Tweet 162
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Infectious/Emerging DiseasesMaterialsBiologyPublic HealthcancerClimate ChangeCell BiologyEcology/EnvironmentTechnology/Engineering/Computer ScienceMedicine/HealthChemistry/Physics/Materials SciencesGenetics

Recent Posts

  • Boston College physicist Brian Zhou receives NSF CAREER Award
  • Sensing suns
  • Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI
  • When foams collapse (and when they don’t)
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In