• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Rice ‘flashes’ new 2D materials

Bioengineer by Bioengineer
January 11, 2021
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Metastable metallic nanoparticles could find use in electronics, optics

IMAGE

Credit: Tour Group/Rice University

HOUSTON – (Jan. 11, 2021) – Rice University scientists have extended their technique to produce graphene in a flash to tailor the properties of other 2D materials.

The labs of chemist James Tour and materials theorist Boris Yakobson reported in the American Chemical Society’s ACS Nano they have successfully “flashed” bulk amounts of 2D dichalcogenides, changing them from semiconductors to metallics.

Such materials are valuable for electronics, catalysis and as lubricants, among other applications.

The process employs flash Joule heating — using an electrical charge to dramatically raise the material’s temperature — to convert semiconducting molybdenum disulfide and tungsten disulfide. The duration of the pulse and select additives can also control the now-metallic products’ properties.

“This rapid process permits us to make an entirely new class of highly valued materials in large scale and without the use of solvents or water,” Tour said.

Two-dimensional dichalcogenides look like hexagonal graphene from above, but viewing them from an angle reveals a sandwichlike structure. In molybdenum disulfide, for instance, a single plane of molybdenum atoms sits between similar, but offset, planes of sulfur.

Making each material in its metallic phase (known as 1T) previously required far more complex processes, according to the researchers. Even then, the products were known to be unstable in ambient conditions. Flash Joule heating appears to solve that problem, producing metastable dichalcogenides in a thousandth of a second.

Powdered, commercially available dichalcogenides mixed with carbon black or tungsten powder to increase their conductivity were placed in a ceramic tube capped with electrodes and flashed with more than 1,350 amps of power for a fraction of a second, then rapidly cooled. With the tube under vacuum, extraneous gases were vented, leaving mostly pure metallics to be harvested.

According to the Yakobson team’s calculations, the large energy input forces structural defects to appear in the materials’ crystal lattices, adding negative charges that make 1T the thermodynamically preferred phase.

“It is an interesting fast-forward incarnation of Le Chatelier’s principle: Under voltage, the material changes to a more conducting 1T phase, to counteract/reduce the applied electric fields,” said co-author Ksenia Bets, a researcher in the Yakobson group. “Our detailed computations reveal that the kinetic path is indirect: The sublimating sulfur creates a vacancy-rich lattice that energetically prefers a 1T structure.”

The fact that conditions and additives can influence the final product should lead to a systematic study about possible variations, Tour said.

Rice graduate student Weiyin Chen is lead author of the paper. Additional co-authors are Rice graduate students Zhe Wang, Emily McHugh, Wala Algozeeb and Jinhang Chen; postdoctoral researchers Duy Xuan Luong and Bing Deng; alumni Muqing Ren and Michael Stanford; assistant research professor Hua Guo; research scientist Guanhui Gao; and undergraduates John Tianci Li and William Carsten.

Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering. Yakobson is the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry.

The Air Force Office of Scientific Research, the Department of Energy (DOE) National Energy Technology Laboratory and DOE Basic Energy Sciences supported the research.

###

Read the abstract at https://pubs.acs.org/doi/10.1021/acsnano.0c08460.

This news release can be found online at https://news.rice.edu/2021/01/11/rice-flashes-new-2d-materials/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related materials:

Tour Group: http://www.jmtour.com

Yakobson Research Group: https://biygroup.blogs.rice.edu

Department of Chemistry: https://chemistry.rice.edu

Rice Department of Materials Science and Nanoengineering: https://msne.rice.edu

Images for download:

https://news-network.rice.edu/news/files/2020/12/1221_FLASH-1-WEB.jpg

Rice University scientists extended their technique to produce graphene in a flash to tailor the properties of 2D dichalcogenides molybdenum disulfide and tungsten disulfide, quickly turning them into metastable metallics for electronic and optical applications. (Credit: Tour Group/Rice University)

https://news-network.rice.edu/news/files/2020/12/1221_FLASH-2-WEB.jpg

An electron microscope image shows tungsten disulfide in its metastable 1T state. The orange dots represent sulfur atoms, the blue represent tungsten. Rice University scientists used flash Joule heating to tailor the properties of 2D dichalcogenides, quickly turning them into metastable metallics for electronic and optical applications. (Credit: Tour Group/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,978 undergraduates and 3,192 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Media Contact
Jeff Falk
[email protected]

Original Source

https://news.rice.edu/2021/01/11/rice-flashes-new-2d-materials/

Related Journal Article

http://dx.doi.org/10.1021/acsnano.0c08460

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Stable Isolated Quantum Spins Achieved on Magnetic Substrates

August 20, 2025
Scientists Unveil Groundbreaking Crystal That Produces Oxygen

Scientists Unveil Groundbreaking Crystal That Produces Oxygen

August 20, 2025

How Mutations in Body Tissues Influence the Ageing Process

August 20, 2025

Survival Outcomes in IIIC Cervical Cancer Treatments

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stable Isolated Quantum Spins Achieved on Magnetic Substrates

Scientists Unveil Groundbreaking Crystal That Produces Oxygen

How Mutations in Body Tissues Influence the Ageing Process

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.