• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Reviewing pressure effects on iron-based high-temperature superconductors

Bioengineer by Bioengineer
July 12, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Iron-based superconductors: a route to room-temperature superconductivity

IMAGE

Credit: FLEET

The discovery of iron-based superconductors with a relatively high transition temperature Tc in 2008 opened a new chapter in the development of high-temperature superconductivity.

The following decade saw a ‘research boom’ in superconductivity, with remarkable achievements in the theory, experiments and applications of iron-based superconductors, and in our understanding of the fundamental mechanism of superconductivity.

A UOW paper published last month reviews progress on high-pressure studies on properties of iron-based superconductor (ISBC) families.

FLEET PhD student Lina Sang (University of Wollongong) was first author on the Materials Today Physics review paper, investigating effects on the superconductivity, flux pinning, and vortex dynamics of ISBC materials, including:

  • pressure-induced superconductivity

  • raising transition temperature Tc

  • pressure-induced elimination/re-emergence of superconductivity

  • effects of phase separation on superconductivity

  • increasing critical current density

  • significantly suppressing vortex creep

  • reducing flux bundle size.

The review spotlights use of pressure as a versatile method for exploring new materials and gaining insight into the physical mechanisms of high-temperature superconductors.

SUPERCONDUCTORS: A BACKGROUND

In a superconductor, an electrical current can flow without any energy loss to resistance.

Iron-based superconductors are a type of ‘high temperature’ (Type II or unconventional) superconductor in that they have a transition temperature (Tc) much higher than a few degrees Kelvin above absolute zero.

The driving force behind such Type II superconductors has remained elusive since their discovery in the 1980s. Unlike ‘conventional’ superconductors, it is clear they cannot be directly understood from the BCS (Bardeen, Cooper, and Schrieffer) electron-phonon coupling theory.

In successive discoveries, the transition temperature Tc has been driven steadily higher.

“The ultimate goal of the research of superconductivity is finding superconductors with a superconducting transition temperature (Tc) at room temperature,” says Prof Xiaolin Wang, the node leader and theme leader of FLEET (also at the University of Wollongong) and Dr Sang’s PhD supervisor.

“Pressure can significantly enhance the Tc for the Fe-based superconductors. And recently, superconductivity was observed near room temperature in hydrogen alloyed compounds,” explains Prof Wang, who is Director of the Institute for Superconducting and Electronic Materials at the University of Wollongong.

###

THE STUDY

Experimental equipment: The diamond anvil cell (left) and hydrostatic pressure cell (right) can be used to establish the effect of pressure on superconducting material.

“Pressure effects on iron-based superconductor families: Superconductivity, flux pinning and vortex dynamics” was published in Materials Today Physics in May 2021 (DOI 10.1016/j.mtphys.2021.100414)

This work was support from the Australian Research Council through ARC Centre of Excellence in FLEET.

Media Contact
Errol Hunt
[email protected]

Original Source

http://www.fleet.org.au/blog/reviewing-pressure-effects-on-iron-based-high-temperature-superconductors/

Related Journal Article

http://dx.doi.org/10.1016/j.mtphys.2021.100414

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsMaterialsSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Delta.g Raises £4.6 Million in Oversubscribed Seed Round to Propel Quantum Sensing Innovation

September 26, 2025
New Study Uncovers “Electron Highways” Driving Underground Chemistry and Pollution Remediation

New Study Uncovers “Electron Highways” Driving Underground Chemistry and Pollution Remediation

September 26, 2025

Superlattice Blotting Creates Highly Ordered Mesoporous Carbon with Abundant Nickel Single Atoms for Enhanced Electrocatalysis

September 26, 2025

From Waste to Wealth: Scientists Convert Biomass Tar into Premium Carbon Materials

September 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    78 shares
    Share 31 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    55 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Material Discovery Unlocks Significant Energy Efficiency in Memory Chips

Mapping RNA Interactions in Arsenic-Induced Neurotoxicity

Acetamido Linkers in Anticancer Drug Design

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.