• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Revealing the path of a metallodrug in a breast cancer cell

Bioengineer by Bioengineer
February 4, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: ESRF

Some types of cancer cannot be treated with classical chemotherapy. Scientists from Inserm, CNRS, Sorbonne University, PSL university, University Grenoble Alpes and ESRF, the European Synchrotron, are working on a metallorganic molecule as an antitumor drug. Their research has given thorough insights into its mechanism in attacking cancer cells. This study is published in Angewandte Chemie.

Triple-negative breast cancer, which represents 10-20% of breast cancers, is not fuelled by hormones. In fact, it tests negative for estrogen and progesterone receptors and excess HER2 protein. This means that it does not respond to hormonal therapy and antibody medicines. Given that it is more aggressive and often has a higher grade than other types of breast cancer, the scientific community is relentlessly trying to find a treatment.

A team from Inserm, the CNRS, Sorbonne University, PSL university, the University Grenoble Alpes and the ESRF have joined forces to study the path that metallorganic molecules or metallocifens, derivatives of the widely-used drug tamoxifen, follow to reach cancerous cells. These metallodrugs were developed by Professor G.Jaouen and his group at Sorbonne University and PSL University. They have demonstrated their broad spectrum of efficacy and their potential to significantly overcome drug resistance.

“We know this molecule works because extensive tests have been already carried out, but we don’t know how it manages to kill the cancer cell. That is why we want to quantify and localise the drug inside the cell, to understand its efficiency”, explains Sylvain Bohic, scientist at the Inserm and main author of the study.

The scientists used the beamline ID16A at the ESRF for their investigations. State-of-the-art synchrotron imaging brought unique insight into the intracellular distribution of the metallocifen, which they could track down with a resolution of 35 nanometres. “The investigations are going on for a few years and finally benefit of the latest capabilities of the instrument in terms of 2D and 3D cryo X-ray fluorescence approaches”, adds Peter Cloetens, in charge of ID16A.

For the first time, they showed how the molecule penetrates the membrane of the cancerous cell in an extremely easy manner, due to its lipophilic nature and target an essential cellular organelle the endoplasmic reticulum a large organelle made of membranous sheets and tubules that begin near the nucleus and extend across the cell. Then, it oxidises and attacks different parts of the cell at the same time, leading to efficient anticancer activity. “Think of it as if the metallorganic molecule starts many fires in different places in the cancer cell, until the tumoral cell can’t deal with it anymore and it dies”, explains Bohic.

The results are promising because this new family of metallodrugs, which acts on multiple targets, could one day become an alternative of classical chemotherapy to overcome drug resistance while holding down costs. Cisplatin, another metal-based medication widely used for cancer treatment, damages the DNA as a primary target inside the cell, and whilst it is very effective, strong side-effects exist and cancer cells developed efficient mechanisms of resistance to this chemotherapy. Indeed, triple negative breast cancer and other cancers, as well as relapsing cancers, are often cisplatin-resistant.

“This study is a contribution to the understanding of alternative mechanisms from chemotherapy to heal cancer. We are at an early stage of research, so clinical trials have not begun yet, but so far it is promising”, says Prof. G. Jaouen. The next step is to find out how this molecule acts in healthy cells and to study toxicology.

###

Media Contact
Sylvain Bohic
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/anie.201812336

Tags: BiochemistryBiologyBreast CancercancerCell BiologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Danger: How Australian Lizards Evolved to Outrun Wildfires

Decoding Danger: How Australian Lizards Evolved to Outrun Wildfires

September 17, 2025
blank

Optimizing Selenium Intake to Improve Sperm Quality in Broilers

September 17, 2025

Sodium Selenite Boosts Fermentation in Alfalfa Silage

September 17, 2025

Disease Experts Collaborate with Florida Museum of Natural History to Develop West Nile Virus Forecast

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Personalized Risk Score Promises Enhanced Ovarian Cancer Detection

Federal Funding Drives Breakthroughs in Cancer Research, AACR Report Shows

Engineering Topological Chiral Transport in Flat-Band Ultracold Atoms

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.