• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers verify 70-year-old theory of turbulence in fluids

Bioengineer by Bioengineer
June 27, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: The University of Queensland

Pilots and air travellers know turbulence can be powerful, but science has struggled to fully explain the phenomenon.

Now, a University of Queensland study has confirmed a 70-year-old theory and is expected to help address “huge problems” in global engineering and transport.

Dr Tyler Neely from the ARC Centre of Excellence for Engineered Quantum Systems (EQUS) said enormous amounts of energy were used daily to transport all sorts of fluids through pipes all over the world.

“Turbulence physics also causes enormous inefficiency for moving vehicles such as ships,” Dr Neely said.

“Fluid has characteristic ways of flowing, but it goes into chaotic eddies when it gets out of equilibrium.

“Better understanding fluid turbulence has great potential to make many industry and transport functions cheaper and greener around the globe.”

Turbulence has absorbed scientific minds for five centuries, since Leonardo da Vinci coined the term la turbulenza.

To verify Nobel Laureate Lars Onsager’s 70-year-old fluid turbulence theory, UQ and Monash University physicists developed techniques to control and measure ultra-cold atom systems.

Dr Neely said Onsager’s theory only directly applies to quantum fluids called superfluids.

“The theory says if you add enough energy to a two-dimensional system, turbulence will cause giant vortices to appear,” Dr Neely said.

“Vortices are regions in fluid where flow revolves around an axis line – similar phenomenon can be seen in the atmosphere of the planet Jupiter.

“Our study created a superfluid by cooling a gas of rubidium atoms almost to absolute zero.

“We then precisely focussed laser beams to create vortices in the fluid, a technique similar to stirring a cup of tea with a spoon.

“It amazes me that we can do this with light and at such a small scale – the cores of the tiny vortices we created were about one tenth of the size a human blood cell.”

The study, appearing in Science (DOI: 10.1126/science.aat5718), was part of a collaboration with the Centre for Quantum Science at the University of Otago.

The Monash research furthermore confirmed Onsager’s theory of the formation of large-scale vortex structures.

“These studies explore the range of states that Onsager predicted,” Dr Neely said.

The discovery will help support the researchers’ next scientific foray, which involves understanding few-particle thermodynamics.

“Better experimental and theoretical understanding will help to better engineer new quantum machines, a key aspect of EQUS research,” Dr Neely said.

###

Media Contact
Dr Tyler Neely
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/science.aat5718

Tags: Atomic/Molecular/Particle PhysicsBiomechanics/BiophysicsChemistry/Physics/Materials SciencesComputer ScienceMaterialsMolecular PhysicsParticle PhysicsResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025
Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025

5 Innovations Securing Water Sources and Ensuring Availability

August 1, 2025

Innovative Imaging Technique Reveals Elemental Distributions in Frozen Solvents within Nanomaterials

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    40 shares
    Share 16 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Predicting Lung Infections After Brain Hemorrhage

Impact of Morphology and Location on Aneurysms

Unraveling EMT’s Role in Colorectal Cancer Spread

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.