• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers use drones to weigh whales

Bioengineer by Bioengineer
October 2, 2019
in Biology
Reading Time: 5 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Fredrik Christiansen

By measuring the body length, width and height of free-living southern right whales photographed by drones, researchers were able to develop a model that accurately calculated the body volume and mass of the whales.

Because of their large size and aquatic life, previously the only way to obtain data on the body mass of whales was to weigh dead or stranded individuals.

The innovative method can be used to learn more about the physiology and ecology of whales, “Knowing the body mass of free-living whales opens up new avenues of research. We will now be able to look at the growth of known aged individuals to calculate their body mass increase over time and the energy requirements for growth. We will also be able to look at the daily energy requirements of whales and calculate how much prey they need to consume.” said Assistant Professor Fredrik Christiansen from Aarhus Institute of Advanced Studies in Denmark and lead author of the study.

Dr. Michael Moore, a Senior Scientist at the Woods Hole Oceanographic Institution and co-author said: “Weight measurements of live whales at sea inform how chronic stressors affect their survival and fecundity, as well as enabling accurate sedative dosing of animals entangled in fishing gear that are aversive to disentanglement attempts.”

The model is already being used to assess the impacts of kelp gull harassment on the health and survival of southern right whale calves. Dr. Mariano Sironi and Dr. Marcela Uhart from the Southern Right Whale Health Monitoring Program and co-authors, emphasized “The use of drones to estimate whale weight and condition, as well as to individually track calves while they grow beside their mothers, has been a real breakthrough in our investigation.”

“In the past we’ve had to rely entirely upon stranded carcasses which added all sorts of uncertainties to our studies.”

The model also allowed the researchers to collaborate with the Digital Life Project at the University of Massachusetts, USA to first recreate a 3D mesh of the whale, and then to work with CG artist Robert Gutierrez to recreate the full-colour 3D model of the right whale. These models can be used for both scientific purposes, such as studying movement, as well as for educational uses.

By adjusting the parameters of the model, the approach could be used to estimate the size of other marine mammals where alternative, more invasive, methods aren’t feasible or desirable.

Baleen whales, which include species like the blue whale, are the largest animals on this planet, with body mass being central to their success as an animal group. However, data on their size has historically been limited to dead specimens, with most samples coming from whaling operations, accidental fisheries bycatch or beach strandings.

Collecting data on dead whales has limitations such as being unable to collect longitudinal data over a whale’s life span and inaccuracies from physical distortion of carcasses caused by bloating and deflation.

Assistant Professor Christiansen explained that “The difficulty in measuring body mass reliably in free-living whales, has prevented the inclusion of body mass in many studies in ecology, physiology and bioenergetics. This novel approach will now make it possible to finally include this central variable into future studies of free-living whales.”

To calculate the body volume and mass of southern right whales the researchers first took aerial photos of 86 individuals off the coast of Península Valdés, Argentina. The clear waters and the large number of whales that gather there every winter for breeding made it an ideal place to collect high quality images of both the dorsal and lateral sides of the whales. From these they were able to obtain length, width and height measurements.

These measurements could then be used to accurately model the body shape and volume of the whales. “We used this model to estimate the body volume of whales caught in scientific whaling operations, for which body girth and mass was known. From these estimates of body volume, we could then calculate the density of the whales, which we in turn could use to estimate the mass of free-living whales photographed by our drones.” Said Christiansen.

Although the model yielded body mass estimates to a high-level of accuracy, there were some limitations due to the relative proportion of different tissues in baleen whales. Christiansen said, “We had to assume a constant body density of the whales, which is not realistic as the proportion of different body tissues (fat, muscle etc.) changes seasonally as the whales deposit or lose body condition.”

###

Notes to Editors

For more information about this study and/or to arrange an interview, please contact:

Professor Fredrik Christiansen, lead author

Email: [email protected], T: +4531332367

Davy Falkner, Media Relations Officer, British Ecological Society

Email: [email protected], T: +44 (0)20 3994 8255, M: +44 (0) 7525 966 919

High-resolution videos and images can be accessed here: https://www.dropbox.com/sh/mtvj1232o2edepw/AACRv5x-jrlIGenB9ipIUb0da?dl=0

Please note the caption information in the file names and credit Fredrik Christiansen. Please also add “photos/videos were taken under research permit.”

An interactive 3D model of a southern right whale created by the researchers can be found here: https://sketchfab.com/3d-models/model-55a-southern-right-whale-3bddfdfafc6c43758df9b94bc9e0fe9e

A pdf of the study* can be found here: https://www.dropbox.com/sh/qeoicnljhwtr736/AAAaK9IUtgyY9u5fGBGZGF6ma?dl=0

When the embargo lifts the paper can be accessed here: https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13298

*This is an uncorrected proof copy for your reference only and should not be shared. Some minor typesetting and copy edits may be made in the final published version but the overall content will be as included here.

This study is published in Methods in Ecology and Evolution. All articles will be available at https://besjournals.onlinelibrary.wiley.com/

Twitter: @MethodsEcolEvol

British Ecological Society

Founded in 1913, the British Ecological Society (BES) is the oldest ecological society in the world. The BES promotes the study of ecology through a range of scientific literature, funding and events, education initiatives and policy work. The society has around 6,500 members from nearly 130 different countries. http://www.britishecologicalsociety.org Twitter and Instagram: @BritishEcolSoc

Media Contact
Davy Falkner
[email protected]

Original Source

https://www.britishecologicalsociety.org/researchers-use-drones-weigh-whales/

Related Journal Article

http://dx.doi.org/10.1111/2041-210X.13298

Tags: BiologyBiomechanics/BiophysicsEcology/EnvironmentMarine/Freshwater BiologyTechnology/Engineering/Computer ScienceZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Impact of miR-4289-Loaded Exosomes on Stem Cells

November 11, 2025
blank

Ovarian Transcriptome Links Inflammation to Poultry Meat Spots

November 11, 2025

Unlocking an 180-Year-Old Mystery: The Link Between Metabolism and Cell Growth

November 11, 2025

The Origin of Motion: Nature’s First Motor from Billions of Years Ago

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Controlling p53 Activity with Nanobody-Kinase System

Digital Devices Boost Urban Flood Response Participation

GLYR1 Suppression Boosts Breast Cancer Cell Aggression

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.