• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, June 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Researchers uncover key cancer-promoting gene

Bioengineer by Bioengineer
January 7, 2015
in Cancer
Reading Time: 2 mins read
1
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

One of the mysteries in cancer biology is how one protein, TGF-beta, can both stop cancer from forming and encourage its aggressive growth. Now, researchers at the University of Michigan Comprehensive Cancer Center have uncovered a key gene that may explain this paradox and provide a potential target for treatment.

TGF-beta is known as a tumor suppressor, meaning it’s necessary to keep cells in check and growing normally. But at some point, its function flips and it becomes a tumor promoter, fostering aggressive growth and spread of cancer. The researchers identified Bub1 as a key gene involved in regulating TGF-beta receptor.

The study is published in Science Signaling.

“Our data that Bub1 is involved at the receptor level is completely unexpected,” says study director Alnawaz Rehemtulla, Ph.D., Ruth Tuttle Freeman Research Professor of radiation oncology and radiology and co-director of the Center for Molecular Imaging at the University of Michigan Medical School.
“Bub1 is well-known for its role in cell division. But this is the first study that links it to TGF-beta. We think this may explain the paradox of TGF-beta as a tumor promoter and a tumor suppressor,” he adds.

The team of researchers at the University of Michigan, including Shyam Nyati, Ph.D., and Brian D. Ross, Ph.D., developed a way to screen for genes that regulate the TGF-beta receptor. When 720 genes from the human genome were screened against lung cancer and breast cancer cells, Bub1 emerged as playing a strong role in TGF-beta signaling.

Bub1 was shown to bind to the TGF-beta receptor and allows it to turn on aggressive cell growth. When the researchers blocked Bub1, it shut down the TGF-beta pathway completely.

TGF-beta is known to play a role in cells developing characteristics of aggressive cancer cells. Researchers also have known that Bub1 is highly expressed in many different types of cancer.
Because Bub1 is found in many types of cancer, developing a drug to target it could potentially impact multiple cancers. A compound to target Bub1 has been developed but is not ready for testing in patients. Initial lab testing suggests that a Bub1 inhibitor can very specifically target Bub1 without causing damage to other parts of the cell.

“When you look at gene expression in cancer, Bub1 is in the top five. In addition, Bub1 expression levels correlate with outcome in patients with lung and breast cancer. But we never knew why. Now that we have that link, we’re a step closer to shutting down this cycle,” Rehemtulla says.

Story Source:
The above story is based on materials provided by University of Michigan Health System.

Share12Tweet8Share2ShareShareShare2

Related Posts

Mullighan 2025 b

Striking Breakthrough: Targeting Fusion Protein Shows Promise in Childhood Leukemia Treatment

June 20, 2025
blank

Mapping Esophageal Cancer Tumor Antigens and Immune Subtypes to Advance Vaccine Development

June 20, 2025

CHEK2 Emerges as a Promising Target to Enhance Immunotherapy in Solid Tumors

June 20, 2025

Elevated Cancer Burden Linked to Increased Racial Diversity and Environmental Stress in Neighborhoods

June 20, 2025
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    161 shares
    Share 64 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    76 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    71 shares
    Share 28 Tweet 18
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Controlling Nitrate Reduction Selectivity with Electrified Membranes

Ferroptosis in Periodontitis: Mechanisms and Effects

Parkinson’s Mutations Impact Dopamine Neurons’ Organelles

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.