• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers review advances in 3D printing of high-entropy alloys

Bioengineer by Bioengineer
May 22, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

SUTD collaborates with universities in Singapore and China to shine light on HEA manufacturing processes and inspire further research in this emerging field

IMAGE

Credit: SUTD

High-entropy alloys (HEAs) are at the frontier of the metal materials community. They are used as alternative materials in the production of high-temperature turbine blades, high-temperature molds and dies, hard coatings on cutting tools or even components of 4th generation nuclear reactors.

By screening proper combinations of HEAs’ constituent elements and regulating their proportions, HEAs can exhibit remarkable mechanical properties at high temperatures and display exceptional strength, ductility and fracture toughness at cryogenic temperatures.

Meanwhile, the development of HEAs for 3D printing has also been advancing rapidly, ramping up great potential for the manufacturing of such geometrically complex HEA products with desirable performances.

However, there is a lack of comprehensive understanding on the 3D printing of HEAs. To tackle this issue, researchers from Singapore University of Technology and Design (SUTD), Nanyang Technological University (NTU), Huazhong University of Science and Technology and Hunan University collaborated to publish a thorough review of the recent achievements on 3D printing of HEAs (refer to image). The study was published in Advanced Materials.

The review paper includes the production processes for HEA powders, 3D printing processes for HEA products, and the microstructure, mechanical properties, functionalities and potential applications of the printed products.

“3D printing of HEAs has been undergoing explosive growth in the academia and will gain extensive interest from industry. In our review, laser-based directed energy deposition, selective laser melting and electron beam melting are validated for their applicability to print various high-quality HEA products. It allows for a combination of material selection, design and manufacturing freedoms for lightweight, customizable and non-assembly required products,” explained lead author Professor Chua Chee Kai from SUTD.

“The ultrafast cooling rates of certain 3D printing techniques are expected to prevent the formation of undesirable intermetallic compounds in HEA products, thereby enhancing their mechanical properties. The different cooling rates of these printing processes would induce substantial variations in both the microstructures and macroscopic performances of the products,” said first author Dr Han Changjun from NTU.

“We believe that this paper serves as a valuable comprehensive review to deepen our understanding of the 3D printing of HEAs by focusing on its unique merits. Hopefully, more researchers would be encouraged to explore this highly interesting field,” added corresponding author Associate Professor Zhou Kun from NTU.

###

Media Contact
Jessica Sasayiah
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/adma.201903855

Tags: Chemistry/Physics/Materials SciencesMaterialsResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

August 27, 2025
Chemically Tuning Quantum Spin–Electric Coupling in Magnets

Chemically Tuning Quantum Spin–Electric Coupling in Magnets

August 27, 2025

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Organ Preservation: Who Accesses the Data?

Prioritizing Student Mental Health: Key Insights from BMES

Revolutionizing Plant Biology: Advances in Genome Synthesis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.