• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Researchers ready B cells for novel cell therapy

Bioengineer by Bioengineer
May 2, 2019
in Immunology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Seattle Children’s

Scientists at Seattle Children’s Research Institute are paving the way to use gene-edited B cells — a type of white blood cell in the immune system — to treat a wide range of potential diseases that affect children, including hemophilia and other protein deficiency disorders, autoimmune diseases, and infectious diseases. If successful, their research would open the door to offering this experimental cell therapy as the first-of-its-kind in clinical trials at Seattle Children’s in as soon as five years.

B cells play a central role in the immune system. When the body is confronted with an infection, they turn into plasma cells that release protective antibodies that both fight ongoing infections and prevent future ones. Unlike other cells of the immune system that have relatively short lifespans, plasma B cells can survive and continuously produce antibodies for decades.

Because plasma cells are so efficient at making and secreting proteins like antibodies they could be the ideal cell type to produce therapeutic proteins.

Dr. David Rawlings, Dr. Richard James and their colleagues in the research institute’s Center for Immunity and Immunotherapies are among a small number of research groups in the U.S. dedicated to exploring how clinicians might some day use plasma cells to fight diseases in children. In a scientific first, a basic science research team led by Rawlings and James genetically reprogrammed human B cells to act as cell factories capable of delivering sustained, high doses of a therapeutic protein introduced by gene editing.

“Theoretically, the B cells we created could provide a long-term treatment for a wide range of diseases where the body lacks the ability to make a certain protein, like in the case of the bleeding disorder, hemophilia B,” James said. “Such a cell therapy could also have broad applications for autoimmune conditions, where the introduced protein could be used to turn off abnormal immune responses, or to disarm infectious diseases by secreting known protective antibodies.”

New research confirms B cell longevity

The other question researchers had to answer was whether or not the reprogrammed B cells would persist in the body after being introduced, and James and his team did just that.

James presented research at the 2019 American Society for Gene and Cell Therapy annual meeting that was the first to demonstrate that engineered human B cells can survive indefinitely in any model. To do this, the scientists developed mouse models with the same molecular features necessary for the survival of long-lived antibody secreting cells in humans.

This, according to James, is one feature of Seattle Children’s gene-edited B cells that may offer an advantage over others.

“While others have developed a relatively short-lived product, the reprogrammed B plasma cells studied in our research have the potential to reside in the bone marrow and produce high-levels of a therapeutic protein for a much longer period,” he said.

Now that James and his team have models with B cells that last, their future studies will utilize these models to test potential new therapies.

“This is a significant advance because, until now, we haven’t been able study long-lived B cells in animal models and the possible therapies they can deliver,” James said. “This study illuminates a path forward for doing so.”

Fine-tuning B Cells into therapeutic powerhouses

Over the next several years, Seattle Children’s will lead experiments to improve the engineered B cells produced in their initial studies. This work will specifically focus on how to best manipulate these B cell products so that it’s feasible to translate them into clinical use.

One question the scientific team plans to address is how to exponentially expand engineered B cells to reach the volume needed for infusion into a patient. Other studies will seek to find ways to make more therapeutic protein from each cell, as well as identify approaches to ensure that engineered cells take hold and persist when infused back into a patient undergoing treatment.

“A novel cell therapy using engineered B cells has the potential to transform the care of children and adults with serious diseases, so it’s exciting to begin work toward making a clinically available product at this point in our research,” James said. “The hope is that we’re in a position to open a phase 1 clinical trial in the next few years.”

###

Media Contact
Lindsay Kurs
[email protected]

Tags: GeneticsHematologyInfectious/Emerging DiseasesMedicine/HealthPediatrics
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Plant-Derived Plastics: FAMU-FSU Engineering Professor Innovates with Material from Plant Cell Walls to Create Versatile Polymers

New Technique Enhances Precision in Assessing Movement Disorders in Children

Huntsman Cancer Institute Leaders Propel Theranostics Innovation to Revolutionize Cancer Treatment

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.