• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers overcome hurdle in CRISPR gene editing for muscular dystrophy

Bioengineer by Bioengineer
January 8, 2019
in Health
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Increasing ‘flags’ in CRISPR extends effectiveness of treatment in mice

IMAGE

Credit: Justin Kelley/MU Health


The gene editing technique known as CRISPR is a revolutionary approach to treating inherited diseases. However, the tool has yet to be used to effectively treat long-term, chronic conditions. A research team led by Dongsheng Duan, PhD, at the University of Missouri School of Medicine has identified and overcome a barrier in CRISPR gene editing that may lay the foundation for sustained treatments using the technique.

CRISPR gene editing is inspired by the body’s natural defensive ability to fend off viruses. The technology enables researchers to alter DNA sequences by cutting out and replacing a mutation in the genome, which has the potential to treat a variety of genetic diseases and conditions. Duan, along with his collaborators at MU, the National Center for Advancing Translational Sciences at the National Institutes of Health and Duke University, are studying how to harness CRISPR to treat Duchenne muscular dystrophy (DMD).

Children with DMD have a gene mutation that interrupts the production of a protein known as dystrophin. Without dystrophin, muscle cells become weaker and eventually die. Many children lose the ability to walk, and muscles essential for breathing and heart function ultimately stop working.

“CRISPR essentially cuts out the mutation and stitches the gene back together,” said Duan, who serves as the Margaret Proctor Mulligan Professor in medical research in the Department of Molecular Microbiology and Immunology at the MU School of Medicine. “In order to do this, the ‘molecular scissors’ in CRISPR, known as Cas9, must know where to cut. The location to cut is flagged by a molecule called gRNA. We were surprised to find that by increasing the quantity of flags, we could extend the effectiveness of the therapy from three months to 18 months in our mouse model.”

Duan’s lab treated 6-week-old mice with DMD intravenously using CRISPR and looked for improvements at 18 months. They initially employed a strategy widely used by many researchers. In this approach, similar amounts of Cas9 and gRNA were administrated. While it worked well when injected directly into the muscle, this strategy yielded poor outcomes when the team tried to achieve long-term correction in all the muscles in the body. They found no dystrophin restoration in skeletal muscle and low-level dystrophin restoration in the heart — the treatment failed to stop disease progression.

When reviewing the results, the team found a disproportionate depletion of gRNA flags, meaning there were not enough gRNA to tell Cas9 where to cut. The team increased the number of gRNA flags and repeated the experiment. This new strategy significantly increased dystrophin restoration in both heart and skeletal muscle and reduced muscle scarring at 18 months. Additionally, muscle function and cardiac function were improved.

“Our results suggest that gRNA loss is a unique barrier for long-term systemic CRISPR therapy,” Duan said. “We believe this barrier can be overcome by increasing and optimizing gRNA doses. While this has exciting possibilities for improvements to DMD therapies, we believe this principle may also be applied to other CRISPR therapies for a range of other diseases and conditions.”

The researchers will continue to test and refine the approach in a mouse model before other models are explored. With more study, they are hopeful this insight may help lay the foundation for improved therapies using CRISPR gene editing.

###

The study, “AAV CRISPR Editing Rescues Cardiac and Muscle Function for 18 Months in Dystrophic Mice,” was recently published online by JCI Insight. Authors include Duan lab members Nalinda Wasala, Lakmini Wasala, Yongping Yue, Jacqueline Louderman, Thais Lessa, Aihua Dai, Keqing Zhang, Gregory Jenkins, Michael Nance, Xiufang Pan and Kasun Kodippili; collaborator Shi-jie Chen from the Department of Physics, Department of Biochemistry and the Informatics Institute at MU; collaborators Chady Hakim and Nora Yang with the National Center for Advancing Translational Sciences; and collaborators Christopher Nelson and Charles Gersbach with Duke University.

The research was funded by the National Institutes of Health (AR-69085, GM-063732 and GM-117059), the Intramural Research Program of the NIH National Center for Advancing Translational Sciences, the Department of Defense (MD15-1-0469 and MD150133), Hope for Javier, the Jackson Freel DMD Research Fund, the Muscular Dystrophy Association (MDA277360) and the Duke Coulter Translational Partnership.

Duan is a member of the scientific advisory board and equity holder of Solid Biosciences LLC. Duan and Yue are inventors on patents (unrelated to this study) that were licensed to Solid Biosciences LLC. The Duan lab has received research supports unrelated to this project from Solid Biosciences LLC. Hakim, Duan, Wasala and Yue have filed a patent application related to the findings described in this paper. Gersbach has filed patent applications related to genome editing for Duchenne muscular dystrophy. Gersbach is an adviser to and receives research support from Sarepta Therapeutics Inc. Gersbach and Nelson are inventors on patent applications related to genome editing.

Media Contact
Derek Thompson
[email protected]
573-882-3323

Original Source

https://medicine.missouri.edu/news/researchers-overcome-hurdle-crispr-gene-editing-muscular-dystrophy

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyGene TherapyGenesGeneticsMedicine/HealthMicrobiologyMusculaturePediatrics
Share12Tweet8Share2ShareShareShare2

Related Posts

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
blank

AI Diagnoses Structural Heart Disease via ECG

July 17, 2025

Functional Regimes Shape Soil Microbiome Response

July 17, 2025

Stealth Adaptations in Large Ichthyosaur Flippers

July 17, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    56 shares
    Share 22 Tweet 14
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.