• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Researchers of the University of Malaga relate DNA methylation levels to obesity

Bioengineer by Bioengineer
April 12, 2019
in Cancer
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

They assure that the methylation of genes related to lipid metabolism and inflammation is altered in obese patients

IMAGE

Credit: University of Malaga

DNA methylation is a mechanism that regulates whether genes are “on” or “off”, and is influenced by hereditary and environmental factors, as well as lifestyle and nutritional habits.

This research evidences that methylation levels in the gene involved in lipid metabolism -Lipoprotein lipase (LPL)- are higher in obese people with a metabolic disease in contrast to healthy people. “Since this gene is essential to decide whether the fat ingested is stored or consumed by the tissues, a dysfunction of this gene would cause high levels of triglycerides in blood”, explains the main author, Daniel Castellano.

In this regard, experts alert that dysfunctional lipid metabolism in obesity is associated with a higher systemic inflammation, diabetes, cardiovascular disease or even cancer.

Likewise, this study also describes a lower DNA methylation in a gene related to inflammatory processes, such as the tumor necrosis factor (TNF), which may cause a higher functioning of this gene, which, in turn, may affect the pro-inflammatory condition observed in obese people with a metabolic disease.

Consequently, the main researchers of the study, Fernando Cardona and María Isabel Queipo, both members of Group A02 of the Biomedical Research Institute of Malaga (IBIMA), coordinated by Francisco José Tinahones, conclude that the methylation levels of genes related to lipid metabolism and inflammation are altered in obese patients with a metabolic disease, which partially explains the development of this disease.

The importance of epigenetic regulation

Thus, they point out the importance of epigenetic regulation in the origin of metabolic diseases and affirm that the study of epigenetic mechanisms is essential for developing new therapeutic strategies to face these pathologies, as well as for determining lifestyle habits that may prevent these alterations in DNA methylation.

###

The results of this study have been published in the scientific journal Journal of Clinical Medicine.

BIBLIOGRAPHIC REFERENCE:

Castellano-Castillo D, Moreno-Indias I, Sanchez-Alcoholado L, Ramos-Molina B, Alcaide-Torres J, Morcillo S, Ocaña-Wilhelmi L, Tinahones F, Queipo-Ortuño MI, Cardona F. Altered Adipose Tissue DNA Methylation Status in Metabolic Syndrome: Relationships Between Global DNA Methylation and Specific Methylation at Adipogenic, Lipid Metabolism and Inflammatory Candidate Genes and Metabolic Variables. J Clin Med. 2019 Jan 13;8(1). pii: E87.

doi: 10.3390/jcm8010087

Media Contact
Fernando Cardona
[email protected]

Related Journal Article

http://dx.doi.org/10.3390/jcm8010087

Tags: BiologycancerDiet/Body WeightEating Disorders/ObesityEndocrinologyGastroenterologyGeneticsMedicine/Health
Share14Tweet8Share2ShareShareShare2

Related Posts

NCI Awards Grant to University of Cincinnati Cancer Center for Study on Combination Therapy in Colorectal Cancer

October 1, 2025

Brain Metastases in Metastatic Breast Cancer

October 1, 2025

Alzheimer’s Protein Reveals New Insights for Cancer Treatment

October 1, 2025

Breast Exam Uptake in Northern Ghana: Factors

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    63 shares
    Share 25 Tweet 16
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Study Reveals Sunlight Intensifies Wildfire Smoke Pollution

Study Reveals Farming’s Environmental Impact Decreasing, But Progress Varies Across England

NCI Awards Grant to University of Cincinnati Cancer Center for Study on Combination Therapy in Colorectal Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.