• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers make organic solar cells immune to the ravages of water, air and light

Bioengineer by Bioengineer
May 2, 2019
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

BROOKLYN, New York, Wednesday, May 3, 2019 – The market for organic solar cells is expected to grow more than 20% between 2017 and 2020, driven by advantages over traditional silicon solar cells: they can be mass produced at scale using roll-to-roll processing; the materials comprising them can be easily found in the earth and could be applied to solar cells through green chemistry; they can be semitransparent and therefore less visually intrusive — meaning they can be mounted on windows or screens and are ideal for mobile devices; they are ultra-flexible and can stretch; and they can be ultra-lightweight.

Unlike silicon solar cells, however, organic cells are highly vulnerable to moisture, oxygen and sunlight itself. State-of-the-art remediation involves incapsulating the cell, which adds to production cost and unit weight, while reducing efficiency.

Researchers at the New York University Tandon School of Engineering have discovered a remarkable means of making organic solar panels more robust, including conferring resistance to oxygen, water and light by doing the opposite: removing, not adding, material.

The team, led by AndrĂ© Taylor, professor of chemical and biomolecular engineering at the NYU Tandon School of Engineering, and including Jaemin Kong, a post-doctoral researcher at NYU, and researchers at Yale University’s Transformative Materials and Devices lab, performed the molecular equivalent of hair removal by waxing: they employed an adhesive tape to strip the electron-accepting molecules — the conjugated fullerene derivative Phenyl-C61-butyric acid methyl ester (PCBM) — from the topmost surface of the photoactive layer of the solar cell, leaving only non-reactive organic polymers exposed. One of the major culprits in device degradation is the oxidation of these fullerene derivatives. Removing PCBM from the exposed film surface reduces the chance of encounters with oxidation sources such as oxygen molecules and water, the latter being especially damaging to PCBM.

In Underwater Organic Solar Cells via Selective Removal of Electron Acceptors near the Top Electrode, a cover story in the April issue of ACS Energy Letters, the team tested an organic cell whose active layer is a blend of PCBM and the more resilient conjugated polymer, poly(3-hexylthiophene) (P3HT). After applying the adhesive tape to the surface of the photoactive layer of the film, they treated the cell with heat and pressure, and, once the film had returned to room temperature, slowly removed the tape from the film surface.

Afterward, only six percent of the PCBM acceptor components remained, according to the investigators, creating a polymer-rich surface. They explained that this minimized contact of the fullerene electron acceptors with oxygen and water molecules, while the polymer-rich surface dramatically enhanced the?adhesion between the photoactive layer and the top metal electrode, ?which happens to prevent another problem that comes with flexion: delamination of the electrode.

“Our results finally?demonstrate that the selective removal of electron acceptors near the?top electrode leads to highly durable organic solar cells that can even function under water without encapsulation,” said Taylor.

Added Kong, “We demonstrated how much longer the cell lasts under exposure to water without significant efficiency loss,” said Kong. “”Moreover, using our tape stripping technique we can control the compositional distribution in a vertical direction of the photoactive layer, which consequently leads to better charge extraction out of the solar cells.”

Taylor said post-procedure stress tests included subjecting the solar units to 10,000 cycles of bending to demonstrate that the technique is robust. He explained that it also confers water resistance to organic solar cells, a boon for products such as solar-powered diving watches.

“But if you look at the obvious use case for solar panels, you have to make sure organic photovoltaics can compete against silicon on rooftops, in rain and snow. This is where organic solar cells simply have not been able to compete for a long time. We are showing a pathway to making this possible,” said Taylor.

###

This research was supported by a grant from the National Science Foundation and an NSF Presidential Early Career Award for Scientists and Engineers.

“Underwater Organic Solar Cells via Selective Removal of Electron Acceptors near the Top Electrode” is available at https://pubs.acs.org/doi/ipdf/10.1021/acsenergylett.9b00274

About the New York University Tandon School of Engineering

The NYU Tandon School of Engineering dates to 1854, the founding date for both the New York University School of Civil Engineering and Architecture and the Brooklyn Collegiate and Polytechnic Institute (widely known as Brooklyn Poly). A January 2014 merger created a comprehensive school of education and research in engineering and applied sciences, rooted in a tradition of invention and entrepreneurship and dedicated to furthering technology in service to society. In addition to its main location in Brooklyn, NYU Tandon collaborates with other schools within NYU, one of the country’s foremost private research universities, and is closely connected to engineering programs at NYU Abu Dhabi and NYU Shanghai. It operates Future Labs focused on start-up businesses in downtown Manhattan and Brooklyn and an award-winning online graduate program. For more information, visit http://engineering.nyu.edu.

Media Contact
Karl Greenberg
[email protected]

Related Journal Article

https://engineering.nyu.edu/news/researchers-make-organic-solar-cells-immune-ravages-water-air-and-light
http://dx.doi.org/10.1021/acsenergylett.9b00274

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesEnergy SourcesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterialsMolecular PhysicsPolymer Chemistry
Share13Tweet8Share2ShareShareShare2

Related Posts

UZH Device Pioneers Search for Light Dark Matter

UZH Device Pioneers Search for Light Dark Matter

September 8, 2025
Unlocking Insulators: How Light Pulses Set Electrons Free

Unlocking Insulators: How Light Pulses Set Electrons Free

September 8, 2025

DGIST Validates Clinical Feasibility of Simultaneous Cell Isolation Technology to Enhance Cancer Diagnostic Accuracy

September 8, 2025

From Layered Transition Metal Oxide to 2D Material: Unveiling the Breakthrough Discovery of 2H-NbOâ‚‚

September 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Open-Source Data Platform Launched to Advance Lung Cancer Genetics Research

AI Reveals Stress Levels in Farmed Amazonian Fish, New Study Shows

Overcoming Resistance Mutations and the Blood–Brain Barrier: Major Challenges in Targeted Therapy for Brain Metastases in Non-Small Cell Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.