• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, August 12, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers improve cement with shrimp shell nanoparticles

Bioengineer by Bioengineer
August 2, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

PULLMAN, Wash. – Putting nanoparticles from shrimp shells into cement paste made the material significantly stronger — an innovation that could lead to reduced seafood waste and lower carbon emissions from concrete production.

Cementwork

Credit: WSU

PULLMAN, Wash. – Putting nanoparticles from shrimp shells into cement paste made the material significantly stronger — an innovation that could lead to reduced seafood waste and lower carbon emissions from concrete production.

Reporting in the journal Cement and Concrete Composites, a team of Washington State University and Pacific Northwest National Laboratory researchers created nanocrystals and nanofibers of chitin, the second most abundant biopolymer in nature, from waste shrimp shells. When these tiny bits of chitin, which are about 1,000 times smaller than a human hair, were added to cement paste, the resulting material was up to 40% stronger. Set time for the cement, or how long it takes to harden, was also delayed by more than an hour, a desired property for long-distance transport and hot weather concrete work.

“The concrete industry is under pressure to reduce its carbon emissions from the production of cement,” said Somayeh Nassiri, an associate professor at the University of California, Davis, who led the research at WSU. “By developing these novel admixtures that enhance the strength of concrete, we can help reduce the amount of required cement and lower the carbon emissions of concrete.”

Concrete is used around the world in critical infrastructure such as building, bridges and roads. It is the most used material on earth after water. Cement production is carbon intensive, requiring the use of fossil fuels to reach the required high temperatures (1500°C). The limestone used in its production also goes through decomposition that produces additional carbon dioxide. Cement production comprises about 15% of industrial energy consumption and about 5% of total greenhouse gas emissions worldwide. High consumption of the material is also partly driven by the challenge of durability — concrete cracks easily and must be repaired or replaced often, says Nassiri.

Meanwhile, seafood waste is a significant problem for the fishing industry, which generates between 6 million and 8 million pounds of waste annually worldwide. Most of that waste is dumped into the sea, says Hui Li, research assistant professor in WSU’s Composite Materials and Engineering Center and a corresponding author on the paper.

“In the current world, dealing with climate change through the circular economy, we want to use waste materials as much as possible. One person’s waste is another person’s treasure,” he said. 

Researchers have worked to improve concrete with a similar common biopolymer, cellulose. Sometimes cellulose additives would help the concrete, and sometimes they wouldn’t. The researchers were flummoxed as to why. 

In their work, the WSU team studied the chitin materials at the nanoscale. Crab, shrimp and lobster shells are made up of about 20-30% chitin with much of the rest being calcium carbonate, another useful additive for cement. Compared to cellulose, chitin at the molecular scale happens to have an additional set of atoms — a functional group — that allows the researchers to control the charge on the surface of the molecules and, consequently, how they behave in the cement slurry. 

“Being able to control the charge on the surface is an important piece to controlling how they function in cement. We could do that quite simply on the chitin because of the carboxyl group that sits in the chitin polymer,” said WSU Regents Professor Michael Wolcott, a corresponding author on the paper.  

The success in strengthening the cement paste came down to how the particles suspend themselves within the cement slurry and how they interact with the cement particles. 

“The chitin nanoparticles repel individual cement particles enough so that it changes the hydration properties of the cement particle within the system,” he said.

As they added the processed nanocrystals of chitin to the cement, they were able to improve and target its properties, including its consistency, the setting time, strength and durability. They saw a 40% increase in strength in how the concrete can bend and a 12% improvement in the ability to compress it.

“Those are very significant numbers,” Wolcott said. “If you can reduce the amount that you use and get the same mechanical function or structural function and double its lifetime, then you’re able to significantly reduce the carbon emissions of the built environment.”

The researchers are now hoping to scale up the work to begin producing the additive at large scales. The research also needs to continue to achieve the same level of enhancements seen at the cement paste scale at the concrete scale. 

In addition to the WSU researchers, the interdisciplinary team included researchers from Pacific Northwest National Laboratory. The work was funded by the Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) program which supports innovative and unconventional energy technology projects that could lead to disruptive technologies.



Journal

Cement and Concrete Composites

DOI

10.1016/j.cemconcomp.2022.104623

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Insights into setting time, rheological and mechanical properties of chitin nanocrystals- and chitin nanofibers-cement paste

Article Publication Date

9-Jun-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Smart Contact Lenses for Cancer Diagnostics and Screening

Smart contact lenses for cancer diagnostics and screening

August 11, 2022
Tohoro, Right Whale, New Zealand

Social media helps scientists monitor rarely sighted whales

August 11, 2022

Simplified voice box enriches human speech

August 11, 2022

Where do clots begin? McMaster researchers create device to replicate conditions in blood vessels after grafts

August 11, 2022

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Urogenital SystemUniversity of WashingtonVaccinesWeaponryVirusVehiclesWeather/StormsVirologyUrbanizationVaccineViolence/CriminalsZoology/Veterinary Science

Recent Posts

  • Cousin of crop-killing bacteria mutating rapidly
  • Brightest stars in the night sky can strip Neptune-sized planets to their rocky cores
  • Smart contact lenses for cancer diagnostics and screening
  • Social media helps scientists monitor rarely sighted whales
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In