• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Researchers identify new roles for common oncogene MYC

Bioengineer by Bioengineer
May 29, 2019
in Cancer
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kamini Singh/Hans-Guido Wendel

Cancer researchers have discovered surprising new functions for a protein called MYC, a powerful oncogene that is estimated to drive the development of almost half a million new cancer cases in the US every year. The study, which will be published May 29 in the Journal of Experimental Medicine, shows that MYC affects the efficiency and quality of protein production in lymphoma cells, fueling their rapid growth and altering their susceptibility to immunotherapy.

MYC drives the development of a wide range of cancers by enhancing the growth and proliferation of tumor cells. This is mainly due to MYC’s function as a transcription factor controlling the production of protein-encoding messenger RNAs (mRNAs) from thousands of different genes within the cell. However, some evidence suggests that MYC might also control the subsequent “translation” of these mRNAs into proteins, a process carried out by complex cellular machines known as ribosomes.

A group of researchers led by Hans-Guido Wendel at Memorial Sloan Kettering Cancer Center, Zhengqing Ouyang at The Jackson Laboratory for Genomic Medicine, and Gunnar Rätsch at the ETH Zürich, analyzed the types of mRNA translated by ribosomes in lymphoma cells containing either low or high levels of MYC. The researchers determined that high levels of MYC stimulate the translation of a specific set of mRNAs, many of which encode components of the respiratory complexes that allow the cell’s mitochondria to produce energy.

The research team found that, in the absence of MYC, the proteins SRSF1 and RBM42 can bind to these mRNAs and prevent them from being translated by ribosomes. When MYC levels are high, however, SRSF1 and RBM42 no longer bind to the mRNAs, and they are free to be translated into respiratory complex proteins. MYC therefore promotes the generation of energy that can fuel the lymphoma cells’ rapid growth and proliferation.

The researchers also discovered that MYC affects how much of an mRNA that ribosomes translate, resulting in the production of longer or shorter versions of proteins. For example, lymphoma cells containing low levels of MYC produce a truncated version of the protein CD19 that, unlike full-length CD19, is no longer exposed on the surface of the cancer cell.

This is important because lymphoma can be treated using CAR-T immune cells that have been genetically engineered to recognize and kill CD19-expressing cancer cells. Loss of surface CD19 is associated with resistance to CAR-T cell therapy, but how lymphoma cells reduce surface CD19 levels is unclear. The researchers found that CAR-T cells were less able to recognize and kill lymphoma cells that lacked surface CD19 because they expressed low levels of MYC.

“Altogether, our study reveals that MYC can affect the production of key metabolic enzymes and immune receptors in lymphoma cells by regulating the efficiency of mRNA translation and the integrity of protein synthesis,” says Hans-Guido Wendel. The researchers now plan to investigate how MYC regulates these different aspects of protein production in cancer cells.

###

Singh et al. 2019. J. Exp. Med. http://jem.rupress.org/cgi/doi/10.1084/jem.20181726?PR

About the Journal of Experimental Medicine

The Journal of Experimental Medicine (JEM) features peer-reviewed research on immunology, cancer biology, stem cell biology, microbial pathogenesis, vascular biology, and neurobiology. All editorial decisions are made by research-active scientists in conjunction with in-house scientific editors. JEM makes all of its content free online no later than six months after publication. Established in 1896, JEM is published by Rockefeller University Press. For more information, visit jem.org.

Visit our Newsroom, and sign up for a weekly preview of articles to be published. Embargoed media alerts are for journalists only.

Follow JEM on Twitter at @JExpMed and @RockUPress.

Media Contact
Ben Short
[email protected]

Related Journal Article

http://dx.doi.org/10.1084/jem.20181726

Tags: cancerCell BiologyGenesHematologyMedicine/HealthMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Newly Discovered Limonoid DHL-11 from Munronia henryi Targets IMPDH2 to Combat Triple-Negative Breast Cancer

February 7, 2026

New Discovery Reveals Why Ovarian Cancer Spreads Rapidly in the Abdomen

February 6, 2026

New Study Finds Americans Favor In-Clinic Screening Over At-Home Tests for Cervical Cancer

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Decision-Making in Dementia Caregivers’ Mobility

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.