• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers identify compounds that starve melanoma cancer cells of energy

Bioengineer by Bioengineer
June 18, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CORVALLIS, Ore. – Researchers at Oregon State University and Oregon Health & Science University have found a possible counterpunch to the drug resistance of melanoma, the most dangerous form of skin cancer.

The findings, published today in the journal Molecular Carcinogenesis, are important because in the United States alone, almost 100,000 new melanoma cases will be diagnosed this year and more than 7,000 melanoma patients are expected to die.

Oregon ranks 15th in the U.S. in per-capita diagnoses, with melanoma afflicting 27 out of every 100,000 Oregonians. Men are more likely than women to develop melanoma; the death rate varies by race and ethnicity and is highest among white people.

Nationwide, melanoma is the fifth-most common cancer and its incidence is on the rise, noted Arup Indra, associate professor in the OSU College of Pharmacy, a member of OHSU’s Knight Cancer Institute and an affiliate investigator at Oregon State’s Linus Pauling Institute. One of the most aggressive cancers, it kills by metastasizing, or spreading, to other organs such as the liver, lungs and brain.

Indra’s team and collaborators at Oregon State and in the Department of Dermatology at OHSU looked for ways to combat the drug resistance that metastatic melanoma cells often quickly develop.

“Breakthroughs in understanding the molecular basis for the disease have led to a couple of different drugs, vemurafenib and dabrafenib, that elicit dramatic clinical responses in patients with metastatic melanoma containing a mutation in a certain gene,” he said. “But the drugs’ effectiveness is limited by a high incidence of resistance, which inevitably leads to disease relapse in six or eight months. The current five-year survival rate of stage IV metastatic melanoma is less than 50%.”

The researchers directed their efforts toward melanoma metabolism – the chemical processes the cells rely on to thrive. Cancer cells have a metabolism that’s been altered from that of normal cells.

At the High Throughput Screen Lab at OSU, the scientists tested almost 9,000 compounds, some of them drugs already approved by the FDA, against a vemurafenib-resistant melanoma cell line to see if any of them would halt proliferation or induce cell death.

They found that two structurally similar compounds – deguelin and rotenone, naturally occurring pesticides produced by many plant species – interfered with the cancer cells’ metabolism. Further testing with deguelin showed that it inhibited oxygen consumption in the cells’ mitochondria, effectively starving the cells of energy.

“Having a metabolic regulator of metastatic melanoma will be a very attractive treatment option,” Indra said. “This drug has been known as a treatment for other cancer types, but its utility as a metabolic regulator in drug-resistant metastatic melanoma has not been shown or demonstrated before.”

###

The National Institutes of Health and the OSU College of Pharmacy supported this research.

Media Contact
Arup Indra
 @oregonstatenews

541-737-5775

Related Journal Article

https://beav.es/ZgB
http://dx.doi.org/10.1002/mc.23068

Tags: BiologycancerCell BiologyGenesGeneticsMedicine/HealthPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

February 7, 2026

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.