• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers evaluate whether lactate sensors can contribute to sports physiology

Bioengineer by Bioengineer
October 27, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

While there are a growing number of wearable lactate sensors available for sports and fitness, there hasn’t necessarily been an improvement in the understanding of this nascent technology—and the debate continues over the usefulness of monitoring lactate in sweat. A recent article in ACS Sensors, a journal of the American Chemical Society, says that despite a recent history of contradictory—and incomplete—evidence, sports physiology is zeroing in on whether this technology can improve performance while preventing injury.

Lactate sensor is tested

Credit: Gaston Crespo/KTH Royal Institute of Technology

While there are a growing number of wearable lactate sensors available for sports and fitness, there hasn’t necessarily been an improvement in the understanding of this nascent technology—and the debate continues over the usefulness of monitoring lactate in sweat. A recent article in ACS Sensors, a journal of the American Chemical Society, says that despite a recent history of contradictory—and incomplete—evidence, sports physiology is zeroing in on whether this technology can improve performance while preventing injury.

The article’s co-authors Gaston Crespo and Maria Cuartero, associate and assistant professors at KTH Royal Institute of Technology, say that the promise of lactate sensor technology—being able to determine in real-time whether an athlete is exerting themselves too much or too little—remains just out of reach for a few basic reasons.

“There isn’t enough evidence about the connection between sport performance and lactate concentration,” Crespo says. “There is also a lack of understanding about the link between lactate in the sweat and lactate in the bloodstream, as well as the connections with other biomarkers.”

Lactate, or lactic acid, is a byproduct of anaerobic respiration, when muscle cells convert glucose to energy without oxygen. Sampling athlete’s blood helps sports scientists and coaches evaluate an athlete’s conditioning and fitness. But the elusive gold standard would be a sensor that monitors lactate in real-time.

In the researchers’ review of existing research, they point out that are yet no universally-accepted approaches for sweat collection and analysis which provide reliable data for identifying a correlation between sweat lactate and blood lactate. The article offers an analysis of the current state of electrochemical lactate sensors integrated in wearables, and it lists key features to be improved or changed toward the final success of the technology.

Among these is the researchers’ own technology, which was published in the same journal during July: an epidermal patch containing a lactate biosensor, as well as pH and temperature sensors. The paper was highlighted in ACS Sensors as one of the journal’s most read articles since its publication.

Temperature and pH typically influence electrochemical readings of lactate, resulting in measurements that are far below what one would expect. So the researchers developed a way to isolate the lactate in sweat using a specially-designed polymer layer in the outer part of the sensor. The polymer protects the reactive enzyme in the sensor from responding to anything but lactate, and it enables the sensor to read higher lactate concentrations than electrochemical sensors typically do.

The system’s future is two-fold: commercial and experimental.

Crespo says it is being developed commercially through a new company, IDRO BV, which the researchers founded with a grant from the European Institute of Innovation and Technology (EIT).

Furthermore, a collaboration with researchers at Dalarna University in Sweden is using the technology to conduct on-body tests, in which blood and sweat measurements are being correlated with the sport performance of athletes. In addition, sweat samples are being collected for a laboratory-based validation of the sensor performance.

The KTH researchers are collaborating with Dalarna University in Sweden to conduct full-body tests, in which they aim to answer key questions brought up in their recent paper, such as whether lactate production is dependent on active muscles rather than passive ones.



Journal

ACS Sensors

DOI

10.1021/acssensors.1c01403

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Can Wearable Sweat Lactate Sensors Contribute to Sports Physiology?

Article Publication Date

22-Oct-2021

COI Statement

The authors declare no competing financial interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

August 27, 2025
blank

Immune Cells in the Brain: Crucial Architects of Adolescent Neural Wiring

August 26, 2025

Dihydromyricetin Shields Against Spinal Cord Injury Damage

August 26, 2025

Key Genes Identified in Nutrient Stress During Virus Infection

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Managing Jurema-Preta in Caatinga Silvopastoral Systems

Exploring Aged Garlic Extract’s Effects on Oral Bacteria

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.