• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Researchers: Eggshells can help grow, heal bones

Bioengineer by Bioengineer
July 8, 2019
in Science
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Discovery could lead to faster recovery from injury, illness

IMAGE

Credit: (Photo credit: Edwin Aguirre for UMass Lowell)

LOWELL, Mass. – Eggshells can enhance the growth of new, strong bones needed in medical procedures, a team of UMass Lowell researchers has discovered.

The technique developed by UMass Lowell could one day be applied to repair bones in patients with injuries due to aging, accidents, cancer and other diseases or in military combat, according to Assistant Prof. Gulden Camci-Unal, who is leading the study.

Through the innovative process, crushed eggshells are inserted into a hydrogel mixture that forms a miniature frame to grow bone in the laboratory to be used for bone grafts. To do so, bone cells would be taken from the patient’s body, introduced into this substance and then cultivated in an incubator before the resulting new bone is implanted into the patient.

The research demonstrates that when eggshell particles – which are primarily made of calcium carbonate – are incorporated into the hydrogel mixture, they increase bone cells’ ability to grow and harden, which could potentially result in faster healing. And, because the bone would be generated from cells taken from the patient, the possibility the individual’s immune system would reject the new material is greatly reduced, according to Camci-Unal.

The process could also be used to help grow cartilage, teeth and tendons, she said.

“This is the first study that uses eggshell particles in a hydrogel matrix for bone repair. We have already filed a patent for it and are very excited about our results. We anticipate the process can be adapted for use in many significant ways,” said Camci-Unal, adding that one day, eggshell particles could also serve as a vehicle to deliver proteins, peptides, growth factors, genes and medications to the body.

UMass Lowell students participating in the research include biomedical engineering and biotechnology Ph.D. candidates Sanika Suvarnapathaki and Xinchen Wu of Lowell, along with Darlin Lantigua of Lawrence. Wu was the lead author of the team’s research findings, which have been published in the academic journal Biomaterials Science and will be featured on the cover of the publication’s print edition this month.

Using eggshells to support bone growth provides a sustainable way to reuse them while advancing the technology behind these procedures, according to the researchers.

“Global waste of discarded eggshells typically amounts to millions of tons annually form household and commercial cooking. By repurposing them, we can directly benefit the economy and the environment while providing a sustainable solution to unmet clinical needs,” Camci-Unal said.

This is not the first time Camci-Unal has used an unconventional approach to design new materials for biomedical engineering. Last year, she and her team used the principles behind origami – the ancient Japanese art of paper folding – as inspiration to build tiny 3D structures where biomaterials can be grown in the lab to create new tissues.

###

UMass Lowell is a national research university located on a high-energy campus in the heart of a global community. The university offers its more than 18,000 students bachelor’s, master’s and doctoral degrees in business, education, engineering, fine arts, health, humanities, sciences and social sciences. UMass Lowell delivers high-quality educational programs, vigorous hands-on learning and personal attention from leading faculty and staff, all of which prepare graduates to be leaders in their communities and around the globe. http://www.uml.edu

Contact:
Nancy Cicco, 978-934-4944 or [email protected]

Christine Gillette, 978-934-2209 or [email protected]

Media Contact
Nancy Cicco
[email protected]

Tags: BiochemistryBiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyCell BiologyEcology/EnvironmentHealth CareMedicine/HealthMolecular BiologySports Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite Impact of resuscitation with 100% oxygen during physiological-based cord clamping or immediate cord clamping on lung inflammation and injury as a headline for a science magazine post, using no more than 8 words

Rewrite Illuminating photoreceptors: TGFβ signaling modulates the severeness of retinal degeneration as a headline for a science magazine post, using no more than 8 words

Partial Flood Defenses Heighten Risks, Inequality in Cities

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.