• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers discover novel non-coding RNAs regulating blood vessel formation

Bioengineer by Bioengineer
May 6, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: UEF/ Raija Törrönen

Researchers at the University of Eastern Finland have discovered previously unknown non-coding RNAs (ncRNAs) involved in regulating the gene expression of vascular endothelial growth factors (VEGF), the master regulators of angiogenesis. The study, conducted by the research groups of Associate Professor Minna Kaikkonen-Määttä and Academy Professor Seppo Ylä-Herttuala, provides a better understanding of the complex interplay of ncRNAs with gene regulation, which might open up novel therapeutic approaches in the future. The results were published in the Molecular and Cellular Biology Journal.

Over the past years, the development of next generation sequencing techniques has revealed that around 97% of the human transcriptome is transcribed as non-coding RNAs, and although the role of the vast majority remains uncharacterized, many functions such as gene regulation have been proven.

On the other hand, endothelial growth factors VEGF-A and VEGF-C are the main regulator of angiogenesis, i.e., new blood vessel formation. Due to their important role in vasculature development, they constitute a potential target for the treatment of several diseases, such as atherosclerosis. Therapeutic angiogenesis has been developed as a promising strategy to rescue ischemic tissues by induction of new blood vessels sprouting from existing vasculature but so far, very few results with clinical significance have been achieved. Therefore, a deeper understanding of the regulatory mechanisms underlying the expression of these key angiogenic factors is needed for the future therapeutic avenues.

In this study, researchers performed in-depth characterization of the genomic loci around the VEGFA and VEGFC genes and identified novel non-coding RNAs, in particular enhancer RNAs (eRNAs) and long non-coding RNAs (lncRNAs). While the enhancers clearly upregulated gene expression, lncRNAs demonstrated various functions. Interestingly, lncRNAs were also regulating other targets including factors related to endothelial functions, such as angiogenesis and cell proliferation.

###

This study was funded by the Centre of Excellence in Cardiovascular and Metabolic Diseases, the Academy of Finland, the European Research Council (ERC), Sigrid Jusélius Foundation, the Finnish Foundation for Cardiovascular Research and the Finnish Cultural Foundation.

For further information, please contact:

Academy Research Fellow, Associate Professor Minna Kaikkonen-Määttä, University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, minna.kaikkonen (a) uef.fi, tel. +35840 355 2413, https://uefconnect.uef.fi/en/person/minna.kaikkonen-maatta/

https://uefconnect.uef.fi/en/group/cardiovascular-genomics-kaikkonen-lab/

Assistant Professor Nihay Laham-Karam, University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, nihay.laham-karam (a) uef.fi, tel. +358 40 355 3292

Research article:

Mushimiyimana I, Tomas Bosch V, Niskanen H, Downes N, Moreau P, Hartigan K, Ylä-Herttuala S, Laham-Karam N, Kaikkonen MU. Genomic landscapes of non-coding RNAs regulating VEGFA and VEGFC expression in endothelial cells. Mol Cell Biol. 2021 Apr 19:MCB.00594-20. doi: 10.1128/MCB.00594-20. Epub ahead of print. PMID: 33875575.

Media Contact
Minna Kaikkonen-Määttä
[email protected]

Original Source

https://www.uef.fi/en/article/researchers-discover-novel-non-coding-rnas-regulating-blood-vessel-formation

Related Journal Article

http://dx.doi.org/10.1128/MCB.00594-20

Tags: Medicine/HealthPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

VHL Inhibits Angiogenesis via HIF-1a in Macrophages

August 28, 2025
blank

Trainer Insights on Canine Aggression and Behavior Solutions

August 27, 2025

Genomic Analysis Reveals How Cavefish Evolved to Lose Their Eyes

August 27, 2025

Unraveling Hypospadias: Genetics and Development Insights

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

VHL Inhibits Angiogenesis via HIF-1a in Macrophages

Cervical Pessary vs. Progesterone: Preventing Preterm Birth

Low Risk of Developing Second Cancer Following Early Breast Cancer Diagnosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.