• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers develop tool to identify molecular receptors in worms

Bioengineer by Bioengineer
January 14, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Findings published in Royal Society of Chemistry journal could speed up neuroscience research

IMAGE

Credit: Worcester Polytechnic Institute

Worcester, Mass. – January 14, 2020 – Researchers at Worcester Polytechnic Institute (WPI) have developed a tool to identify molecular receptors in worms that are involved in sensing pheromones related to mating, an advance that could speed up neuroscience research into pheromones by eliminating months of work.

Associate professor of biology and biotechnology Jagan Srinivasan, doctoral candidate in biology Douglas K. Reilly, and researchers at Cornell University published their findings in Organic & Biomolecular Chemistry, a journal of the Royal Society of Chemistry in the United Kingdom.

Pheromones are chemicals produced by animals that send signals to other animals and trigger social responses, such as mating. Srinivasan and Reilly study pheromones in microscopic worms known as Caenorhabditis elegans, or C. elegans, to better understand how the sense of smell works. Their research could have implications for human research because C. elegans has a nervous system that mimics the basic mechanisms of smell in humans, and loss of the sense of smell is associated with neurodegenerative disorders such as Alzheimer’s disease.

Srinivasan and Reilly developed a process that more quickly isolates pheromone receptors in C. elegans. Receptors are specialized proteins that act as docking stations for molecules. When worms are exposed to pheromones, the pheromones latch onto the molecular receptors in the worms.

Isolating a specific molecular receptor traditionally has been a long, laborious process because the worms possess more than 1,000 molecular receptors. Srinivasan described the traditional process–which takes three or four months–as hunting for a needle in a haystack. The new method he and Reilly developed takes about a month.

“Here we are saving months of work, we’re streamlining the process, and we’re getting a targeted approach,” Srinivasan said.

In their study, Srinivasan and Reilly attached a chemical known as an alkyne to an ascaroside, a pheromone produced by C. elegans to attract male worms for mating.

“We wanted to find a way that we could take a pheromone and link it to a probe, yet it would still be biologically active so a male would sense it and respond to it with the right receptor,” Reilly said. “Then we wouldn’t have to screen 1,200 receptors that are in the genome.”

For this study, the researchers focused on the process rather than the resulting receptor, which they said could be a subject of further research. Their probe methods could also be applied to other pheromones and to other research organisms, such as flies, to better understand how receptors function, they said.

“We’re looking at this mate attractant pheromone, but there are people looking at pheromones involved in foraging for food and other actions,” Reilly said. “For those, we can start to ask what receptors are sensing the pheromone we’re using.”

In addition, Srinivasan said, “Applications of this new technology could help identify receptors in parasitic nematodes that cause damage to agricultural crops.”

###

About Worcester Polytechnic Institute

WPI, the global leader in project-based learning, is a distinctive, top-tier technological university founded in 1865 on the principle that students learn most effectively by applying the theory learned in the classroom to the practice of solving real-world problems. Recognized by the National Academy of Engineering with the 2016 Bernard M. Gordon Prize for Innovation in Engineering and Technology Education, WPI’s pioneering project-based curriculum engages undergraduates in solving important scientific, technological, and societal problems throughout their education and at more than 50 project centers around the world. WPI offers more than 50 bachelor’s, master’s, and doctoral degree programs across 14 academic departments in science, engineering, technology, business, the social sciences, and the humanities and arts. Its faculty and students pursue groundbreaking research to meet ongoing challenges in health and biotechnology; robotics and the internet of things; advanced materials and manufacturing; cyber, data, and security systems; learning science; and more. http://www.wpi.edu

Contact:

Alison Duffy

Director of Strategic Communications

Worcester Polytechnic Institute

Worcester, Massachusetts

508-831-6656; 508-340-5040 (cell)

[email protected]

Media Contact
Alison Duffy
[email protected]
508-831-6656

Original Source

https://www.wpi.edu/news/sniffing-out-mate-wpi-researchers-develop-tool-identify-molecular-receptors-pheromones-worms

Related Journal Article

http://dx.doi.org/10.1039/C9OB02099C

Tags: AlzheimerBiochemistryBiologyBiotechnologyDevelopmental/Reproductive BiologyMicrobiologyneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Mitochondrial Dynamics in Cancer Drug Resistance

October 3, 2025

Rice Bran Extract: A Shield Against Neuroinflammation

October 3, 2025

Nationwide Survey Reveals Insights on Internal Medicine Mentorship

October 3, 2025

Comprehensive Analysis of Cystic Fibrosis Treatments for Kids

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    86 shares
    Share 34 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Mitochondrial Dynamics in Cancer Drug Resistance

Rice Bran Extract: A Shield Against Neuroinflammation

Nationwide Survey Reveals Insights on Internal Medicine Mentorship

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.