• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers develop new microneedle array combination vaccine delivery system

Bioengineer by Bioengineer
April 21, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Novel vaccine delivery technology will contribute to efforts to develop universal vaccines and improve global immunization capabilities essential for combating coronavirus, reports the Journal of Investigative Dermatology

IMAGE

Credit: UPMC

Philadelphia, April 21, 2020 – In parallel to their current work on a potential coronavirus vaccine, researchers at the University of Pittsburgh School of Medicine have developed a new vaccine delivery system for vaccines using live or attenuated viral vectors: a finger-tip sized patch that contains 400 tiny needles, each just half of one millimeter. Their progress is reported in the Journal of Investigative Dermatology, published by Elsevier.

The needles, made from sugar and the specific cargo being delivered, comprise a three-dimensional (3D), multicomponent dissolving microneedle array (MNA). While feeling like having Velcro pressed against the skin, the vaccine would penetrate the upper level of the skin, absorb moisture from the skin, and then dissolve and release molecules that prompt the immune system to make antibodies to attack the virus. In addition to antibody production, this technology has the potential to improve cellular immune responses in patients and expand global immunization capabilities. It is clear evidence of the broad reach and contribution of skin scientists, even extending into pandemic vaccine design.

Explaining the importance of this work, lead author Louis D. Falo, Jr., MD, PhD, Professor and Chairman of the Department of Dermatology, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA, explains, “We are developing this new delivery technology because while traditional vaccines are often effective in inducing antibody responses, they frequently fail to generate the cellular responses that are essential to prevent or treat many cancers or infectious diseases.”

The skin is an ideal vaccination site because it contains an immune network that is highly responsive and encourages the generation of strong and long-lasting immunity.

Dissolvable MNAs are designed to mechanically penetrate the superficial cutaneous layers, rapidly dissolve upon insertion into the skin, and deliver uniform quantities of biocargo to a defined 3D space within the skin. This enables localized delivery of low amounts of drugs or vaccines to achieve high concentrations in this specific skin microenvironment.

Using in vivo mouse models, investigators generated the 3D multicomponent dissolvable vaccine platform combining a live adenovirus-encoded antigen with an added component, polyinosinic:polycytidylic acid (poly I:C), an immunostimulant used to simulate the skin immune system. This successfully induced both antibody responses and stronger cellular immune responses.

Induction of antigen-specific cellular immunity is a point of emphasis in the vaccine field, as evidenced by recent efforts to generate “universal vaccines” for mutable infectious diseases like influenza, HIV, and coronaviruses by targeting infected cells.

“Remarkably,” says Dr. Falo, “the MNA vaccine platforms incorporating both antigen-encoding adenovirus and poly I:C augmented the destruction of targeted cells significantly compared to MNA-delivery of the same adenovirus alone.” The researchers also found that the MNAs integrating both poly I:C and adenovirus retained their immunogenicity after one month of storage at 4? C. MNA-delivered vaccines also have advantages in their ease of fabrication, application, and storage compared to other vaccine delivery platforms.

“Our results suggest that multicomponent MNA vaccine platforms uniquely enable delivery of both adjuvant and antigen-encoding viral vectors to the same skin microenvironment, resulting in improved immunogenicity including cellular immune responses,” comments Dr. Falo. “This MNA delivery approach could improve the effectiveness of adenoviral vaccines now in development for the prevention of coronavirus disease (COVID-19).”

###

Media Contact
Theresa Monturano
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.jid.2020.03.966

Tags: Infectious/Emerging DiseasesMedicine/HealthPublic HealthVaccinesVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

October 5, 2025
“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nurses’ Insights on Implementing Patient-Reported Outcomes

Exploring NK Cell Therapies for Solid Tumors

Acupuncture Use for Low Back Pain in China

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.