• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, January 22, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers develop new combined process for 3D printing

Bioengineer by Bioengineer
December 16, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Harald Rupp / Uni Halle

Chemists at Martin Luther University Halle-Wittenberg (MLU) have developed a way to integrate liquids directly into materials during the 3D printing process. This allows, for example, active medical agents to be incorporated into pharmaceutical products or luminous liquids to be integrated into materials, which allow monitoring of damage. The study was published in “Advanced Materials Technologies”.

3D printing is now widely used for a range of applications. Generally, however, the method is limited to materials which are liquefied through heat and become solid after printing. If the finished product is to contain liquid components, these are usually added afterwards. This is time-consuming and costly. “The future lies in more complex methods that combine several production steps,” says Professor Wolfgang Binder from the Institute of Chemistry at MLU. “That is why we were looking for a way to integrate liquids directly into the material during the printing process.”

To this endeavour, Binder and his colleague Harald Rupp combined common 3D printing processes with traditional printing methods such as those used in inkjet or laser printers. Liquids are added drop by drop at the desired location during the extrusion of the basic material. This allows them to be integrated directly and into the material in a targeted manner.

The chemists have been able to show that their method works through two examples. First, they integrated an active liquid substance into a biodegradable material. “We were able to prove that the active ingredient was not affected by the printing process and remained active,” explains Binder. In the pharmaceutical industry, such materials are used as drug depots which can be slowly broken down by the body. They can be used after operations, for example, to prevent inflammation. This new process could facilitate their production.

Secondly, the scientists integrated a luminous liquid into a plastic material. When the material becomes damaged, the liquid leaks out and indicates where the damage has occurred. “You could imprint something like this into a small part of a product that is exposed to particularly high levels of stress,” says Binder. For example, in parts of cars or aircraft that are under a lot of strain. According to Binder, damage to plastic materials has so far been difficult to detect – unlike damage to metals, where X-rays can expose micro-cracks. The new approach could therefore increase safety.

The combined process is also conceivable for many other areas of application, says the chemist. The team soon plans to use the method to print parts of batteries. “Larger quantities cannot be produced in the laboratory with our setup,” Binder explains. In order to produce industrial quantities, the process must be further developed outside the university.

###

The research was supported by the Leistungszentrum “System- und Biotechnologie”, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) and by the EU as part of the “Horizon 2020” programme.

Media Contact
Ronja Münch
[email protected]

Original Source

https://pressemitteilungen.pr.uni-halle.de/index.php?modus=pmanzeige&pm_id=5161

Related Journal Article

http://dx.doi.org/10.1002/admt.202000509

Tags: Chemistry/Physics/Materials SciencesMaterialsPharmaceutical/Combinatorial ChemistryPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

New technique builds super-hard metals from nanoparticles

January 22, 2021
IMAGE

Defects may help scientists understand the exotic physics of topology

January 22, 2021

Highly functional membrane developed for producing freshwater from seawater

January 22, 2021

AI: ensuring that humans remain in the center

January 22, 2021
Next Post
IMAGE

Root bacteria could help defeat fatal citrus disease

IMAGE

Ensuring a proper body plan

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    65 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceBiologyClimate ChangePublic HealthMaterialsInfectious/Emerging DiseasesMedicine/HealthcancerGeneticsCell BiologyEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Regulating the ribosomal RNA production line
  • A professor from RUDN University developed new liquid crystals
  • New technique builds super-hard metals from nanoparticles
  • No more needles for diagnostic tests?
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In