• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers demonstrate how deep learning can advance study of neural degeneration

Bioengineer by Bioengineer
September 24, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Adriana San Miguel, NC State University

Researchers from North Carolina State University have demonstrated the utility of artificial intelligence (AI) in identifying and categorizing neural degeneration in the model organism C. elegans. The tool uses deep learning, a form of AI, and should facilitate and expedite research into neural degeneration.

“Researchers want to study the mechanisms that drive neural degeneration, with the long-term goal of finding ways to slow or prevent the degeneration associated with age or disease,” says Adriana San Miguel, corresponding author of a paper on the work and an assistant professor of chemical and biomolecular engineering at NC State. “Our work here shows that deep learning can accurately identify physical symptoms of neural degeneration; can do it more quickly than humans; and can distinguish between neural degeneration caused by different factors.

“Having tools that allow us to identify these patterns of neural degeneration will help us determine the role that different genes play in these processes,” San Miguel says. “It will also help us evaluate the effect of various pharmaceutical interventions on neural degeneration in the model organism. This is one way we can identify promising candidates for therapeutic drugs to address neurological disorders.”

For this study, researchers focused on C. elegans, or roundworm, which is a model organism widely used to study aging and the development of the nervous system. Specifically, the researchers focused on PVD neurons, which are nerve cells that can detect both touch and temperature. The researchers chose the PVD neuron because it is found throughout the nervous system of C. elegans and it is known to degenerate due to aging.

Roundworms are tiny and transparent – meaning that it is possible to see their nervous systems while they are still alive. Traditionally, identifying degeneration in C. elegans neurons requires researchers to look for microscopic changes in the cell, such as the appearance of bubbles that form on parts of individual neurons. Researchers can analyze the extent of neural degeneration by tracking the size, number and location of these bubbles.

“Counting these bubbles is a time-consuming and labor-intensive process,” says Kevin Flores, co-author of the study and an assistant professor of mathematics at NC State. “We’ve demonstrated that we can collect all of the relevant data from an image in a matter of seconds, by combining the power of deep-learning with the advanced speed of so-called GPU computing. This enables a much faster quantitative assessment of neuronal degeneration than traditional techniques.”

In addition to monitoring the effects of age on neural degeneration, the researchers also examined the effects of “cold shock,” or prolonged exposure to low temperatures. The researchers were surprised to learn that cold shock could also induce neural degeneration.

“We also found that neural degeneration caused by cold shock had a different pattern of bubbles than the degeneration caused by aging,” San Miguel says. “It is difficult or impossible to distinguish the difference with the naked eye, but the deep learning program found it consistently.

“This work tells us that deep learning tools are able to spot patterns we may be missing – and we may be just scratching the surface of their utility in advancing our understanding of neural degeneration.”

###

The paper, “Deep learning-enabled analysis reveals distinct neuronal phenotypes induced by aging and cold-shock,” is published in the journal BMC Biology. First author of the paper is Sahand Saberi-Bosari, a recent Ph.D. graduate of NC State.

The work was done with support from the National Institutes of Health, under grants R00AG046911 and R21AG059099; and from the National Science Foundation, under grant IOS1838314.

Media Contact
Matt Shipman
[email protected]

Original Source

https://news.ncsu.edu/2020/09/ai-and-neural-degeneration/

Related Journal Article

http://dx.doi.org/10.1186/s12915-020-00861-w

Tags: BiologyBiotechnologyneurobiologyPhysiologyResearch/DevelopmentRobotry/Artificial IntelligenceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Boeremia exigua: Fungal Pathogen of Ginseng

Decoding Boeremia exigua: Fungal Pathogen of Ginseng

November 1, 2025
blank

Alveolar Macrophages Predict TST/IGRA Conversion Resistance

November 1, 2025

Intestinal Parasites in Punjab’s Rock Pigeons Unveiled

November 1, 2025

Rj4 Immunity Network Limits Soybean-Rhizobia Symbiosis

November 1, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Parental Stress in Neurodevelopmental Disorders: Key Factors Revealed

Insights on Eosinophilic Granulomatosis with Polyangiitis: A Podcast

Boosting Lettuce Yields with Steel Slag Compost Teas

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.