• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, April 14, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers are first to see DNA ‘blink’

Bioengineer by Bioengineer
February 17, 2017
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Northwestern University

Many of the secrets of cancer and other diseases lie in the cell's nucleus. But getting way down to that level — to see and investigate the important genetic material housed there — requires creative thinking and extremely powerful imaging techniques.

Vadim Backman and Hao Zhang, nanoscale imaging experts at Northwestern University, have developed a new imaging technology that is the first to see DNA "blink," or fluoresce. The tool enables the researchers to study individual biomolecules as well as important global patterns of gene expression, which could yield insights into cancer.

Backman will discuss the tool and its applications — including the new concept of macrogenomics, a technology that aims to regulate the global patterns of gene expression without gene editing — Friday (Feb. 17) at the American Association for the Advancement of Science (AAAS) annual meeting in Boston.

The talk, "Label-Free Super-Resolution Imaging of Chromatin Structure and Dynamics," is part of the symposium "Optical Nanoscale Imaging: Unraveling the Chromatin Structure-Function Relationship," which will be held from 1 to 2:30 p.m. Eastern Time Feb. 17 in Room 206, Hynes Convention Center.

The Northwestern tool features six-nanometer resolution and is the first to break the 10-nanometer resolution threshold. It can image DNA, chromatin and proteins in cells in their native states, without the need for labels.

For decades, textbooks have stated that macromolecules within living cells, such as DNA, RNA and proteins, do not have visible fluorescence on their own.

"People have overlooked this natural effect because they didn't question conventional wisdom," said Backman, the Walter Dill Professor of Biomedical Engineering in the McCormick School of Engineering. "With our super-resolution imaging, we found that DNA and other biomolecules do fluoresce, but only for a very short time. Then they rest for a very long time, in a 'dark' state. The natural fluorescence was beautiful to see."

Backman, Zhang and collaborators now are using the label-free technique to study chromatin — the bundle of genetic material in the cell nucleus — to see how it is organized. Zhang is an associate professor of biomedical engineering at McCormick.

"Insights into the workings of the chromatin folding code, which regulates patterns of gene expression, will help us better understand cancer and its ability to adapt to changing environments," Backman said. "Cancer is not a single-gene disease."

Current technology for imaging DNA and other genetic material relies on special fluorescent dyes to enhance contrast when macromolecules are imaged. These dyes may perturb cell function, and some eventually kill the cells — undesirable effects in scientific studies.

In contrast, the Northwestern technique, called spectroscopic intrinsic-contrast photon-localization optical nanoscopy (SICLON), allows researchers to study biomolecules in their natural environment, without the need for these fluorescent labels.

Backman, Zhang and Cheng Sun, an associate professor of mechanical engineering at McCormick, discovered that when illuminated with visible light, the biomolecules get excited and light up well enough to be imaged without fluorescent stains. When excited with the right wavelength, the biomolecules even light up better than they would with the best, most powerful fluorescent labels.

"Our technology will allow us and the broader research community to push the boundaries of nanoscopic imaging and molecular biology even further," Backman said.

###

Media Contact

Megan Fellman
[email protected]
847-491-3115
@northwesternu

http://www.northwestern.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Superbug killer: New nanotech destroys bacteria and fungal cells

April 14, 2021
IMAGE

Rapid decreases in resting heart rate from childhood to adulthood may indicate heart trouble ahead

April 14, 2021

Dueling evolutionary forces drive rapid evolution of salamander coloration

April 14, 2021

Cascading effects of noise on plants persist over long periods and after noise is removed

April 14, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyEcology/EnvironmentChemistry/Physics/Materials SciencesPublic HealthClimate ChangeMedicine/HealthMaterialsTechnology/Engineering/Computer SciencecancerGeneticsCell BiologyInfectious/Emerging Diseases

Recent Posts

  • Superbug killer: New nanotech destroys bacteria and fungal cells
  • Rapid decreases in resting heart rate from childhood to adulthood may indicate heart trouble ahead
  • Dueling evolutionary forces drive rapid evolution of salamander coloration
  • Cascading effects of noise on plants persist over long periods and after noise is removed
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In