• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers add order to polymer gels

Bioengineer by Bioengineer
December 6, 2019
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new kind of soft elastic material has medical and technological applications

IMAGE

Credit: Image: © 2019 Li et al.


Gel-like materials have a wide range of applications, especially in chemistry and medicine. However, their usefulness is sometimes limited by their inherent random and disordered nature. Researchers from the University of Tokyo’s Institute for Solid State Physics have found a way to produce a new kind of gel which overcomes this limitation. It is still malleable and adaptable like existing gels, but it has a more ordered structure, which can open up a new range of possible uses in various fields.

When you hear the word “gel,” you probably conjure up the image of something wobbly and viscous like some cosmetic substance or the inside of a memory-foam mattress. But in the world of scientific research, gels have a more specific definition. Strictly speaking, gels are three-dimensional networks of polymers — chains of molecules — with microscopic pores between these chemical strands. The nature and arrangement of these polymers give gels different functions leading to common applications, such as chemical filtration or drug delivery.

The creation of polymer network gels is difficult to control, so they are very disordered and contain many structural inconsistencies or defects. They are said to be heterogeneous, meaning their forms vary widely throughout their structures. However, Research Associate Xiang Li and colleagues have found a novel way to maintain a high level of order while fabricating polymer gels. The result is a homogeneous gel, one that is more consistent throughout its structure whilst still providing the benefits of a highly porous and malleable material.

“We demonstrated that it’s actually quite easy to synthesize an extremely homogeneous gel network,” said Li. “First, we tightly packed some star-shaped polymers together in a solvent and added some chemicals which, when activated, join these star polymers together. We activated the joining or ‘cross-linking’ chemicals in a controlled manner; this in turn led to a more ordered polymer gel network than one might ordinarily expect from this kind of process.”

The fabrication process, based on a concept known as bond percolation, is very effective at producing ordered gel networks — so much so that researchers feel it forces them to redefine what actually constitutes a gel. Previously a gel was assumed to contain disorder and defects, however these are no longer key properties. But all this work is not just for the sake of making something new; it has a strong purpose and it could lead to some interesting advancements.

“Ordered yet flexible gel networks could be used in applications like high-performance chemical filters, flexible sensors, mechanical actuators, controlled drug release and even ultraclear optical fibers,” explained Li. “We want to encourage others to build on our work here and find other ways to synthesize new polymer gels based on what we have started. Although our method was very specific, it lays the foundations for a more general experimental platform.”

###

Journal article

X. Li, S. Nakagawa, Y. Tsuji, N. Watanabe, M. Shibayama. Polymer gel with a flexible and highly ordered three-dimensional network synthesized via bond percolation.

Science Advances. DOI: 10.1126/sciadv.aax8647

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI grant numbers JP16H02277, JP17K14536, and JP19K15628.

Institute for Solid State Physics

http://www.issp.u-tokyo.ac.jp/index_en.html

Research Contact

Research Associate Xiang Li

Institute for Solid State Physics, The University of Tokyo

5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 JAPAN

Tel: +81-4-7136-3419

Email: [email protected]

Press Contacts

Ms. Madoka Mochida

Institute for Solid State Physics, The University of Tokyo

5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 JAPAN

Email: [email protected]

Mr. Rohan Mehra

Division for Strategic Public Relations, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN

Tel: +81-3-5841-0876

Email: [email protected]

About the University of Tokyo

The University of Tokyo is Japan’s leading university and one of the world’s top research universities. The vast research output of some 6,000 researchers is published in the world’s top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at https://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

Media Contact
Xiang Li
[email protected]
81-471-363-419

Original Source

https://www.u-tokyo.ac.jp/focus/en/press/z0508_00085.html

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aax8647

Tags: Chemistry/Physics/Materials SciencesMaterialsMolecular PhysicsNanotechnology/MicromachinesPharmaceutical SciencesPharmaceutical/Combinatorial ChemistryPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    67 shares
    Share 27 Tweet 17
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Amplifying Signals in Solid-State Sensors via Asymmetric Echo

Evaluating China’s Health Insurance Payment Policy Effectiveness

Early Gut Microbiome in Preterms Linked to Early Human Milk

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.