• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Research reveals cilia’s role in cardiovascular functions and genetic diseases

Bioengineer by Bioengineer
August 20, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The study from Chapman University discovered that membrane swelling in primary cilia has extracellular vesicle-like characteristics–a finding that can lead to treatment of ciliopathy disorders

IMAGE

Credit: Advanced Science

Orange, Calif. – Research from Chapman University provides new insight into the characteristics of crucial proteins within the ciliary membrane that play vital roles in human genetic diseases and cardiovascular functions.

Recently, primary cilium, an organelle that exist on the surface of almost every cell type in the body, is shown to have membrane swelling. This is referred to as ciliary bulbs, and their structure and physiological relevance remains unknown.

Ashraf Mohieldin, Ph.D., a postdoctoral fellow at the Chapman University School of Pharmacy and principal investigator of the study, led a team to examine and analyze the structure of primary cilia to better comprehend ciliary bulbs and its significance. Using a single-cell, single-cilium imaging technique and proteomic identification, they discovered that a ciliary bulb has extracellular vesicle (EV)-like characteristics.

Extracellular vesicles are known to facilitate information within cardiovascular cells. Mohieldin’s team found that ciliary extracellular-like vesicles (cELV) share similarities with EV, and that it plays a specific role in ciliary signaling, cellular functions and maintaining cardiovascular homeostasis. Primary cilia’s membrane contains these sensory proteins that detect signals from other cells and in the nearby environment. Serving as the cellular compartments that regulate essential signaling pathways, the protein’s signal detection activates the cell’s response and behavior. Evaluating from a database of 172 cELV proteins, the researchers also identified that cELV has a unique and dynamic movement and the ability to be released by mechanical fluid force.

Defects in the primary cilia has been associated with a wide range of genetic disorders called ciliopathies, which includes Joubert syndrome, Bardet-Biedl syndrome, polycystic kidney disease and Meckel-Gruber syndrome. Ciliopathies are often chronically disabling and life-threatening conditions that affects multiple organ systems.

“Our findings reveal for the first time crucial ciliary proteins that are implicated in ciliopathy disorders,” said Mohieldin. “We hope that our research will rejuvenate our understanding and current approach to investigate human genetic diseases.”

To screen abnormal cELV function and the protein’s role in cardiovascular systems, Dr. Mohieldin’s laboratory worked with zebrafish and mice. The researchers observed randomized heart looping, hydrocephalus, and cystic kidney disorders in the zebrafish. In addition, they looked at compensated heart contractility in both the zebrafish and mice to validate and compare the data. Through this, they saw that low circulation of cELV results in hypotension with compensated heart function, left ventricular hypertrophy, cardiac fibrosis and arrhythmogenic characteristics, which result in a high mortality rate in mice. Furthermore, the overall ejection fraction, stroke volume, and cardiac output are significantly decreased in mice lacking cELV. No previous research found cELV’s physiological roles in zebrafish and mouse models prior to this.

With this finding of the strong link between cELV and ciliopathies and cardiovascular function, the hope is that future research will focus on these proteins to help discern a viable treatment for disorders associated with cilia dysfunction.

“Targeting these proteins can help scientists to clearly understand the mechanism of these disorders and ultimately lead the path to potential treatments for ciliopathies,” said Mohieldin.

###

Published as the front cover of Advanced Science on Aug. 19, the paper is titled, “Proteomic Identification Reveals the Role of Ciliary Extracellular-Like Vesicle in Cardiovascular Function.” The research was supported by the National Institutes of Health, American Heart Association, National Institute of General Medical Sciences, Congressionally Directed Medical Research Programs and the U.S. Department of Defense.

About Chapman University

Founded in 1861, Chapman University is a nationally-ranked private university located in Southern California. Chapman is categorized by the Carnegie Classification as an R2 “high research activity” institution and offers personalized education to more than 9,000 undergraduate and graduate students. The campus has produced a Rhodes Scholar, been named a top producer of Fulbright Scholars and hosts a chapter of Phi Beta Kappa, the nation’s oldest and most prestigious honor society. Based in the City of Orange, Chapman also includes the Harry and Diane Rinker Health Science Campus in Irvine. In 2019, the university opened its 11th college, Fowler School of Engineering, in its newest facility, Keck Center for Science and Engineering. Learn more about Chapman University: http://www.chapman.edu.

Media Contact
Bethanie Le
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/advs.202070087

Tags: BiologyBiotechnologyCardiologyCell BiologyGeneticsMedicine/HealthPharmaceutical SciencePharmaceutical Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Do Steroids Improve Cerebral Palsy-Free Survival in Preemies?

November 5, 2025

DRG Payments and Unintended Care Quality Effects in China

November 5, 2025

Mount Sinai Health System Set to Deploy Microsoft Dragon Copilot

November 5, 2025

Common Heartburn and Blood Pressure Medications Associated with Poorer Breast Cancer Prognosis in Extensive Global Study

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Do Steroids Improve Cerebral Palsy-Free Survival in Preemies?

DRG Payments and Unintended Care Quality Effects in China

Mount Sinai Health System Set to Deploy Microsoft Dragon Copilot

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.