• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Research paves way for new source for leukemia drug

Bioengineer by Bioengineer
March 20, 2019
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CORVALLIS, Ore. – Chemistry researchers at Oregon State University have patented a method for making anti-leukemia compounds that until now have only been available via an Asian tree that produces them.

The synthesis of cephalotaxine and homoharringtonine (HHT) paves the way toward less-expensive, more readily available leukemia drugs whose production is not subject to the risks and inefficiencies associated with harvesting natural sources.

Also, the synthesis of cephalotaxine opens the door to preparing other, structurally related compounds for evaluation as potential new cancer drugs.

“We want to partner with industry so we don’t have to grow trees to get this anymore,” said corresponding author Christopher Beaudry, associate professor of chemistry in OSU’s College of Science. “And maybe we can come up with a more potent protein translation inhibitor, or a more selective inhibitor. There’s also a chance this molecule can find application in blocking bacterial protein synthesis, which would be useful for treating antibiotic-resistant pathogens.”

Findings were published in Angewandte Chemie.

HHT, also known as Synribo or omacetaxine mepesuccinate, is used to treat chronic myeloid leukemia, one of four main types of the disease.

Historically, HHT has been made by adding an ester to cephalotaxine, an alkaloid derived from the leaves of an Asian tree: the plum yew. And the only way to get more cephalotaxine was to plant more plum yews.

That’s problematic, Beaudry said.

“Trees don’t grow very fast,” he said. “And any kind of agricultural problem can affect production of the material. By using chemical synthesis, we can start with commodity chemicals to prepare cephalotaxine, and we will further optimize the process to make it commercially viable.”

Leukemia is a type of cancer that originates in the blood-forming cells of the bone marrow. Nearly 200,000 people in the U.S. are diagnosed with leukemia each year.

Myeloid leukemias, which are also called myelocytic, myelogenous or non-lymphocytic leukemias, start in early myeloid cells. Myeloid cells are what eventually become platelet-making cells and white blood cells other than lymphocytes.

Chronic myeloid leukemia develops slowly, and most patients can live with it for several years, but it’s harder to cure than the acute form of the disease. It’s characterized by a chromosome abnormality that results in a protein overproduction, leading to the proliferation of the cancer cells.

Chronic myeloid leukemia is treated with drugs, such as Gleevec, that bind to a cancer-causing protein and inactivate it – until the cancer mutates and the drug doesn’t work anymore, which is where HHT comes in. HHT shuts off production of all proteins that the fast-growing leukemia cells require.

In addition, HHT holds promise for thwarting chronic myeloid leukemia stem cells, as well as for combating other cancer cell lines.

Beaudry and graduate student Xuan Ju used an oxidative ring-opening of a furan, a type of organic compound, to trigger the HHT synthesis via a reaction known as a spontaneous transannular Mannich cyclization.

“From start to finish – all nine steps from the chemical we buy – the yield is greater than 5 percent, which sounds terrible but is actually quite good,” Beaudry said. “Typically the yield for any process would be much lower – think about how much tree mass is required to make HHT – and we think we can make further improvements as well.”

###

The National Science Foundation and OSU supported this research.

Media Contact
Xuan Ju
[email protected]

Related Journal Article

https://beav.es/ZwQ
http://dx.doi.org/10.1002/anie.201902174

Tags: BiochemistrycancerChemistry/Physics/Materials SciencesMedicine/HealthPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring T Cell Immunotherapy in Pancreatic Cancer

November 5, 2025
Moffitt Study Reveals Promising Targeted Therapy Breakthrough for NRAS-Mutant Melanoma

Moffitt Study Reveals Promising Targeted Therapy Breakthrough for NRAS-Mutant Melanoma

November 4, 2025

Identifying Cardiac Complications in Breast Cancer Survivors

November 4, 2025

ASTRO-AstraZeneca Small Cell Lung Cancer Therapy Challenge Winners Revealed

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sex Differences in Heart Septum Mechanics Explored

Can Bamboo Be the Key to Tackling Plastic Pollution?

The Neuroscience of Exceptional Face Recognition: Unraveling the Minds of Those Who Never Forget a Face

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.