• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Research investigates impact of climate change on glacier-fed rivers in Peru

Bioengineer by Bioengineer
March 21, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Remote communities in the Peruvian Andes depend on the water from melting glaciers and mountain ecosystems to provide them with food and power

IMAGE

Credit: Caroline Clason, University of Plymouth

Remote communities in the Peruvian Andes, as well as communities downstream, depend on the water from melting glaciers and mountain ecosystems to provide them with food and power, and to support industry.

But climate change is increasingly putting that in jeopardy, posing a serious threat to future water resources and having potentially severe implications for the vulnerable populations living in river basins fed by the glaciers.

Now a major research project is looking to establish the precise effects future changes in the glacial system might pose, and how agencies and the communities themselves can work together to mitigate the potential effects of changing water quantity and quality as the glacier retreat.

The project is being led by the University of Plymouth and the Geophysical Institute of Peru, and draws together glaciologists, hydrologists, geographers, environmental and social scientists.

It is being funded in the UK through the Newton Fund, awarded by the Natural Environment Research Council (NERC), while the Peru researchers are supported by CONCYTEC, the National Council of Science, Technology and Technological Innovation.

The key objectives of research include:

  • Identifying the dynamic role of glacial melt in the basin water budget, building upon existing glacier and hydrological monitoring networks in the Cordillera Blanca and remote sensing data;
  • Developing a conceptual model determining the links between upstream pressures and downstream responses through identification of sources of water, sediment and contaminants from both glacier and non-glacier-fed areas;
  • Evaluating the downstream impact of variability in water and sediment supply on contaminant levels and environmental quality;
  • Establishing local capacities to mitigate supply challenges through co-design of a Payment for Ecosystem Services (PES) model, designing a response to a long-term trend of decreased water availability and increased (competing) demands on resources.

The research will build on research projects led by the University examining the effects of climate and social change on communities in East Africa and Chile.

Dr Caroline Clason, Lecturer in Physical Geography, is Plymouth’s Principal Investigator on the new project, working alongside Professor of Catchment Science Will Blake and Professor of Geoscience Communication Iain Stewart. The research also involves Plymouth Marine Laboratory and the Westcountry Rivers Trust.

Dr Clason said: “The glaciers of the Andes are crucial for these communities. For example, in the Ancash region of Peru, glacial melt provides up to 67 per cent of the dry season water supply going up to 91 per cent during extreme drought. The rapid retreat of glaciers in the Cordillera Blanca has already had notable impact on that supply, posing challenges for downstream agriculture, industry and hydropower generation not just through a reduction in water but also an increase in sediment and contaminants transported downstream during wet season floods. Fully understanding these challenges, and working with local people and agencies to find ways to overcome them, is essential.”

Dr Sergio Morera, of the Geophysical Institute of Peru, added: “Although the Santa basin is the most studied catchment system in Peru, the outputs of scientific studies emerging in the region have not yet translated into development and improvement of management and adaption policies. Our own studies have shown that the Santa catchment has the highest erosion and sediment transport rates along the Pacific coast, reflecting the susceptible geology and intense mining activity, but to date there has been no policy response. Our strategy will try to promote a real change in policy through a combination of stakeholder engagement, training and knowledge exchange activities. These are integrated with our research programme, permitting research output and impact to develop iteratively in parallel.”

###

Media Contact
Alan Williams
[email protected]

Original Source

https://www.plymouth.ac.uk/news/research-investigates-impact-of-climate-change-on-glacier-fed-rivers-in-peru

Tags: Climate ChangeEarth ScienceEnergy SourcesGeographyGeology/SoilHydrology/Water ResourcesSocioeconomics
Share12Tweet8Share2ShareShareShare2

Related Posts

Neighboring Groups Speed Up Polymer Self-Deconstruction

Neighboring Groups Speed Up Polymer Self-Deconstruction

November 28, 2025
blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Epithelial Pyroptosis Spurs TREM1+ Macrophages, Activates Th17

Dysprosium Oxide Enhances Borate Tellurite Glass Properties

Blood Transfusions Linked to Preterm Infant Neurodevelopment

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.