• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, April 14, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research in land plants shows nanoplastics accumulating in tissues

Bioengineer by Bioengineer
June 22, 2020
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UMass Amherst, Shandong University offer one of the first nanoplastics studies in land plants

IMAGE

Credit: UMass Amherst/Xing lab
Shandong University/Yuan and Wang labs

AMHERST, Mass. – As concern grows among environmentalists and consumers about micro- and nanoplastics in the oceans and in seafood, they are increasingly studied in marine environments, say Baoshan Xing at the University of Massachusetts Amherst and colleagues in China. But “little is known about the behavior of nanoplastics in terrestrial environments, especially agricultural soils,” they add.

Xing, an environmental scientist at UMass Amherst’s Stockbridge School of Agriculture, and collaborators at Shandong University, China, point out that until now, there had been no direct evidence that nanoplastics are internalized by terrestrial plants.

They state, “Our findings provide direct evidence that nanoplastics can accumulate in plants, depending on their surface charge. Plant accumulation of nanoplastics can have both direct ecological effects and implications for agricultural sustainability and food safety.” Both positively and negatively charged nanoplastics accumulate in the commonly used laboratory model plant, Arabidopsis thaliana.

Xing adds that widespread global use and persistence in the environment result in an “enormous” amount of plastic waste. He says, “Our experiments have given us evidence of nanoplastics uptake and accumulation in plants in the laboratory at the tissue and molecular level using microscopic, molecular and genetic approaches. We have demonstrated this from root to shoot.” Details are in Nature Nanotechnology this week.

Xing points out that nanoplastic particles can be as small as a protein or a virus. Weathering and degradation change plastic’s physical and chemical properties and imparts surface charges, so environmental particles are different from the pristine polystyrene nanoplastics often used in the lab. “This is why we synthesized polystyrene nanoplastics with either positive or negative surface charges for use in our experiments.”

He helped to design the study, interpret the results, evaluate and revise the manuscript while a large team at Shandong University led by Xian-Zheng Yuan and Shu-Guang Wang conducted the experiments.

They grew Arabidopsis plants in soil mixed with differently charged, fluorescently labeled nanoplastics to assess plant weights, height, chlorophyll content and root growth. After seven weeks, they observed that plant biomass and height were lower in plants exposed to nanoplastics than in controls, for example.

“Nanoplastics reduced the total biomass of model plants,” Xing adds. “They were smaller and the roots were much shorter. If you reduce the biomass, it’s not good for the plant, yield is down and the nutritional value of crops may be compromised.”

He adds, “We found that the positively charged particles were not taken up so much, but they are more harmful to the plant. We don’t know exactly why, but it’s likely that the positively charged nanoplastics interact more with water, nutrients and roots, and triggered different sets of gene expressions. That needs to be explored further in crop plants in the environment. Until then, we don’t know how it may affect crop yield and food crop safety.”

The team also analyzed seedlings to investigate sensitivity of the roots to charged nanoplastics. Exposed for 10 days, seedling growth was inhibited compared with that of control seedlings. To identify molecular mechanisms responsible, the researchers used RNA-Seq transcriptomic analyses of roots and shoots, then verified results with a quantitative PCR assay on three root genes and four shoot genes.

“Regardless of the surface charge, Arabidopsis can take up and transport nanoplastics with sizes of less than 200 nm,” they write. Further, “In this study, we mainly demonstrate that the pathway of uptake and transport of nanoplastics in root tissues differed between differentially charged nanoplastics.”

###

Support came from National Natural Science Foundation of China, Natural Science Foundation of Shandong Province, several individual grants at Shandong University and the USDA Hatch program. Xing also acknowledges support from UMass Amherst Conti Faculty Fellowship.

Media Contact
Janet Lathrop
[email protected]

Original Source

https://www.umass.edu/newsoffice/article/research-land-plants-shows-nanoplastics

Related Journal Article

http://dx.doi.org/10.1038/s41565-020-0707-4

Tags: AgricultureMolecular BiologyPlant SciencesPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Impacts of coronavirus lockdowns: New study collects data on pollutants in the atmosphere

April 14, 2021
IMAGE

Genetic admixture in the South Pacific: from Denisovans to the human immune response

April 14, 2021

Get your head in the game — One gene’s role in cranial development

April 14, 2021

Two research projects to be receive funds from Samsung Science & Technology Foundation

April 14, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Urogenital SystemWeather/StormsZoology/Veterinary ScienceUniversity of WashingtonVehiclesVirologyVirusViolence/CriminalsVaccinesVaccineWeaponryUrbanization

Recent Posts

  • In pig brain development, nature beats nurture
  • How we can reduce food waste and promote healthy eating
  • Bacteria that cause periodontitis are transmitted from parents to children
  • New method measures super-fast, free electron laser pulses
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In