• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Research identifies potential target for group a streptococcus vaccine

Bioengineer by Bioengineer
April 1, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LEXINGTON, Ky. (April 1, 2019) — Most people think of “strep throat” as a relatively benign infection cured by a round of antibiotics and a few days of rest. But the bacterium that causes strep throat — Group A Streptococcus — is also responsible for a number of much more dangerous disorders, including rheumatic heart disease and toxic shock syndrome.

With the specter of increased resistance to antibiotics, the scientific community is feeling pressure to find new ways to treat bacteria like Group A Streptococcus. And it appears that an international group of scientists has gained some insight into this microbial enemy — and hope of a vaccine.

Group A Streptococcus has a thick cell wall that protects it from environmental hazards, including attacks from our own immune system. This bacterium is remarkably resistant to the human antimicrobial protection mechanisms for reasons that are not well understood.

The group of investigators — led by Natalia Korotkova of the University of Kentucky and Nina Van Sorge of Utrecht University — wondered: was there any “weak point” in the bacterial cell wall that could be exploited?

The group set out to identify the genes that conferred Group A Streptococcus resistance by bombarding the bacteria with two antimicrobials: zinc ions and human group IIA secreted phospholipase A2. They found that both assays identified the same culprit: the gacH gene.

The team of more than a dozen scientists from five countries, each with a discrete expertise, further deciphered the function of this gene using a variety of biochemical, analytical and structural methods, determining that it enables Group A Streptococcus to reinforce its resistance to attack by our defense systems by modifying cell wall glycopolymers with glycerol phosphate.

“This previously unrecognized Streptococcus cell wall modification impacts host-pathogen interactions and might therefore be a very attractive target for vaccine design, especially since the gacH gene is widely distributed in the genomes of Group A Streptococcus and related bacteria,” Korotkova said.

State-of-the-art NMR methods and mass-spectrometry analyses enabled the identification of this modification.

“This glycerol phosphate modification had gone unnoticed for decades due to loss during preparation steps,” she said.

Because the Strep A bacteria is ranked among the top ten causes of mortality from infectious diseases in the world, the potential impact of a vaccine is considerable, particularly where resources and access to healthcare are limited.

“We need additional studies to demonstrate that this glycerol phosphate-modified glycopolymer can be included as a component of a safe and effective Group A Streptococcus vaccine” Korotkova said. “

###

Results were published on April 1, 2019 in Nature Chemical Biology.

Media Contact
Laura Wright
[email protected]
http://dx.doi.org/10.1038/s41589-019-0251-4

Tags: BiochemistryCell BiologyGenesInfectious/Emerging DiseasesMedicine/HealthPublic Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Immobilization Technique Enhances Surface Plasmon Resonance Analysis of Membrane Proteins

Innovative Immobilization Technique Enhances Surface Plasmon Resonance Analysis of Membrane Proteins

November 7, 2025
Radiative Coupled Evaporative Cooling Hydrogel Enables Above-Ambient Heat Dissipation and Enhanced Flame Retardancy

Radiative Coupled Evaporative Cooling Hydrogel Enables Above-Ambient Heat Dissipation and Enhanced Flame Retardancy

November 7, 2025

Electroactive Ferrocene Enables Shuttle-Free Aqueous Zinc–Iodine Cells

November 6, 2025

Exploring 3D Chaotic Microcavities with X-Ray Vision

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NSAIDs Reverse Multidrug Resistance in E. coli

Advanced Ceramic Materials for Electromagnetic Interference Shielding: Mechanisms, Optimization Approaches, and Future Applications

Hidden Diversity of Trichuris incognita Redefines Whipworm

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.