• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, January 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Regulating immunological memory may help immune system fight disease, MU study finds

Bioengineer by Bioengineer
January 21, 2023
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

COLUMBIA, Mo. – Scientists have long sought to better understand the human body’s immune responses that occur during various diseases, including cancer and inflammatory diseases.

In a recent study at the University of Missouri, Emma Teixeiro, an associate professor in the MU School of Medicine, and her team analyzed how immunological memory – the memory the body’s immune system retains after an infection or vaccination that helps protect against reinfection – gets generated and maintained, as well as the role inflammation plays in shaping that immunological memory.

“Our immune system defends us from disease, but it is a very complicated system with many interactions occurring, and if things get dysregulated, it may actually play a role in causing disease,” said Teixeiro, who works in the NextGen Precision Health Institute on MU’s campus. “So, our research focuses on better understanding how these immune responses can be generated and controlled, specifically by looking at the critical role T cells play, as T cells help protect the body from infection and may play a role in attacking cancer.”   

MU researchers

Credit: University of Missouri

COLUMBIA, Mo. – Scientists have long sought to better understand the human body’s immune responses that occur during various diseases, including cancer and inflammatory diseases.

In a recent study at the University of Missouri, Emma Teixeiro, an associate professor in the MU School of Medicine, and her team analyzed how immunological memory – the memory the body’s immune system retains after an infection or vaccination that helps protect against reinfection – gets generated and maintained, as well as the role inflammation plays in shaping that immunological memory.

“Our immune system defends us from disease, but it is a very complicated system with many interactions occurring, and if things get dysregulated, it may actually play a role in causing disease,” said Teixeiro, who works in the NextGen Precision Health Institute on MU’s campus. “So, our research focuses on better understanding how these immune responses can be generated and controlled, specifically by looking at the critical role T cells play, as T cells help protect the body from infection and may play a role in attacking cancer.”   

Using a mouse model, the researchers created various strains of pathogenic bacteria that increased levels of inflammation through the stimulator of interferon genes – or STING – proteins inside of T cells. While many scientists assumed this increase in inflammation would result in a stronger immune response and therefore stronger immunological memory, Teixeiro and her team found the opposite: immunological memory was reduced.  

“Some scientists in the field believe STING activation may be targeted to improve cancer vaccines or immunotherapies, so gaining a basic understanding of all the interacting mechanisms at play is critical to reduce the chances of unintended consequences or harmful side effects,” Teixeiro said. “We want to better understand how to regulate immunological memory, which has implications for potential vaccines or immunotherapies that trigger T cells in a way that hopefully boosts long-term memory, so our bodies are protected from disease over time.” 

While her research is fundamental in nature, Teixeiro’s findings have the potential to contribute to the development of more effective treatments to help patients suffering with cancer, chronic obstructive pulmonary disease (COPD), STING-associated vasculopathy with onset in infancy (SAVI), asthma and other chronic inflammatory syndromes. 

“The pursuit of knowledge is what drives my curiosity as a scientist,” Teixeiro said. “While there are still more questions to answer, this research is a small step in the right direction, and I am proud to be a part of it.” 

“STING controls T cell memory fitness during infection through T cell intrinsic and Indoleamine-pyrrole 2,3-dioxygenase (IDO) dependent mechanisms” was recently published in PNAS. Coauthors on the study include Michael Quaney, Curtis Pritzl, Rebecca Newth, Karin Knudson, Vikas Saxena, Caitlyn Guldenpfennig, Diana Gil, Chris Rae, Peter Lauer, Mark Daniels and Dezzarae Luera.

-30-



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2205049120

Method of Research

Experimental study

Subject of Research

Animals

Article Title

STING controls T cell memory fitness during infection through T cell-intrinsic and IDO-dependent mechanisms

Article Publication Date

12-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Inmazeb (REGN-EB3) antibodies target the Ebola virus glycoprotein

LJI scientists uncover the structure and function of Inmazeb, the first FDA-approved drug for Ebola virus infection

January 30, 2023
Robert Canter

Tumor microbiome linked to immunotherapy success in sarcoma patients

January 30, 2023

Rice lab uncovers dynamics behind protein crucial in breast cancer

January 30, 2023

KAIST presents a fundamental technology to remove metastatic traits from lung cancer cells​

January 30, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

An illuminated water droplet creates an ‘optical atom’

Connections between peripheral artery disease, negative social determinants of health like poverty may lead to earlier diagnosis, intervention in at-risk Blacks

Monitoring an ‘anti-greenhouse’ gas: Dimethyl sulfide in Arctic air

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In