• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Red algae thrive despite ancestor’s massive loss of genes

Bioengineer by Bioengineer
October 29, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study may spawn ways to genetically alter and control red seaweeds

IMAGE

Credit: Debashish Bhattacharya/Rutgers University-New Brunswick


You’d think that losing 25 percent of your genes would be a big problem for survival. But not for red algae, including the seaweed used to wrap sushi.

An ancestor of red algae lost about a quarter of its genes roughly one billion years ago, but the algae still became dominant in near-shore coastal areas around the world, according to Rutgers University-New Brunswick Professor Debashish Bhattacharya, who co-authored a study in the journal Nature Communications.

The research may assist in the creation of genetically altered seaweeds that could be used as crops, help to predict the spread of seaweed pests and – as the climate warms and pollution possibly increases – control invasive seaweeds that blanket shorelines.

Scientists believe the 25 percent loss in genetic material resulted from adaptation by the red algal ancestor to an extreme environment, such as hot springs or a low-nutrient habitat. That’s when the genome of these algae became smaller and more specialized. So, how did they manage to escape these challenging conditions to occupy so many different habitats?

“It is a story akin to Phoenix rising from the ashes, and the study answers an important question in evolution,” said Bhattacharya, a distinguished professor in the Department of Biochemistry and Microbiology in the School of Environmental and Biological Sciences. “This lineage has an amazing evolutionary history and the algae now thrive in a much more diverse environment than hot springs.”

Red algae include phytoplankton and seaweeds. Nori and other red seaweeds are major crops in Japan, Korea and China, where they serve as sushi wrap, among other uses. Red seaweeds are also used as food thickeners and emulsifiers and in molecular biology experiments. Meanwhile, seaweed pests and invasive species are becoming a common threat to coastlines, sometimes inundating them.

The scientists hypothesized that the red algal ancestor was able to adapt to widely varying light environments by developing flexible light-harvesting apparatuses. And their results strongly support this hypothesis. They generated a high-quality genome sequence from Porphyridium, a unicellular red alga. They found that many duplicated as well as diversified gene families are associated with phycobilisomes – proteins that capture and transfer light energy to photosystem II (a protein complex that absorbs light) to split water, the critical first step in photosynthesis that powers our planet.

A key component of phycobilisomes are “linker proteins” that help assemble and stabilize this protein complex. The results show a major diversification of linker proteins that could have enhanced photosynthetic ability and may explain how the algae now thrive in diverse environments, from near-shore areas to coral reefs.

###

The lead author is JunMo Lee, a visiting scientist at Rutgers who works at Kyungpook National University in South Korea. Scientists at Sungkyunkwan University in South Korea contributed to the study.

Media Contact
Todd Bates
[email protected]
848-932-0550

Original Source

https://news.rutgers.edu/red-algae-thrive-despite-ancestor%E2%80%99s-massive-loss-genes/20191023#.XbC9hOhKi71

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-12779-1

Tags: Agricultural Production/EconomicsBiologyClimate ChangeEcology/EnvironmentEvolutionFood/Food ScienceGeneticsMarine/Freshwater BiologyOceanography
Share12Tweet8Share2ShareShareShare2

Related Posts

Global Movement and Annual Cycle in Spoonbills

Global Movement and Annual Cycle in Spoonbills

September 10, 2025
blank

Critically Endangered Shark Meat Frequently Sold Under False Labels in US, Study Finds

September 10, 2025

Fermented Poncirus Extract Inhibits Fat Cell Formation

September 10, 2025

Life at the Edge: Exploring Survival Within Arctic Ice

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    52 shares
    Share 21 Tweet 13
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Oligomeric Proanthocyanidin Targets Metastatic Cancer Stem Cells

Global Movement and Annual Cycle in Spoonbills

Targeted Intraoperative Radiotherapy Advances in Early Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.