• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Rat spinal cords control neural function in biobots

Bioengineer by Bioengineer
April 28, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The interaction between a rat spinal cord and an engineered muscle system displays behavior similar to the peripheral nervous system

IMAGE

Credit: Collin D. Kaufman

WASHINGTON, Tuesday, April 28, 2020 — Biological robots, or biobots, draw inspiration from natural systems to mimic the motions of organisms, such as swimming or jumping. Improvements to biobots to better replicate complex motor behaviors can lead to exciting biorobotic engineering applications to help solve real world challenges. However, this requires the creation of biohybrid robots — biobots made up of both organic and artificial materials — which is a challenge.

Researchers from the University of Illinois at Urbana-Champaign combined an intact rat spinal cord with a tissue-engineered, 3D muscle system. They describe the novel biohybrid system in the journal APL Bioengineering, from AIP Publishing.

After culturing the system for seven days, the researchers found that the motor neurons from the spinal cord begin to produce electrical activity that causes contraction in the artificial muscles, mirroring the behavior of the peripheral nervous system.

“When we looked more deeply at how the neuron-muscle interface developed, we were very excited to observe many similarities between our tissue-engineered spinobot and in vivo development,” said author Collin Kaufman, a neuroscience graduate student at UIUC.

Kaufman said this result indicates the explanted spinal cord is a viable mechanism for controlling muscular behaviors, even when removed from its natural environment.

They further tested this by varying the concentration of neurotransmitters in the system. When additional neurotransmitters are present, the contractions are more patterned and consistent, and when they are blocked, the twitching decreases.

Because studying the peripheral nervous system can be so difficult, the ability to observe it externally — as demonstrated in the present study — can lead to great strides in medicine.

One potential example is in Lou Gehrig’s disease, also known as amyotrophic lateral sclerosis, in which the death of neurons results in the eventual loss of motor function. By developing an external peripheral nervous system, researchers can study ALS with ease of access to the impacted components in real time.

“The next steps to studying such a disease are surprisingly close,” Kaufman said. “By replacing the muscle, the spinal cord, or any combination of the two tissues with an ALS mutant model, researchers would be able to study how diseased neurons interact with nearby muscles.”

In addition, hybrid biobots can be used as surgical training tools, allowing medical students to perform practice surgery on real biological tissue.

“The future applications of this technology are only beginning to be understood, and we expect many great things from this area in the next few years,” said Martha Gillette, professor of cell and developmental biology at UIUC.

###

The article, “Emergence of functional neuromuscular junctions in an engineered, multicellular spinal cord-muscle bioactuator,” is authored by C.D. Kaufman, S.C. Liu, C. Cvetkovic, C. Lee, G. Naseri Kouzehgarani, R. Gillette, R. Bashir and M.U. Gillette. The article will appear in AIP Bioengineering on April 28, 2020 (DOI: 10.1063/1.5121440). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5121440.

ABOUT THE JOURNAL

APL Bioengineering is an open access journal publishing significant discoveries specific to the understanding and advancement of physics and engineering of biological systems. See http://aip.scitation.org/journal/apb.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/1.5121440

Tags: BiologyBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesMedicine/HealthneurobiologyRobotry/Artificial IntelligenceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Social Risk Factors Linked to Diabetes Prevalence

October 2, 2025
Miniature CRISPR–Cas10 Grants Immunity via Inhibition

Miniature CRISPR–Cas10 Grants Immunity via Inhibition

October 2, 2025

Cardiac KCNQ1-KCNE1 Gating Driven by Structure, PIP2

October 2, 2025

Islet Macrophages Remodeled by Limited β-Cell Death

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    71 shares
    Share 28 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Aligning Language Models with Human Brain Processing

MoS2 Nanosheets Enhance Capacitive Deionization Water Purification

Social Risk Factors Linked to Diabetes Prevalence

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.