• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, September 27, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Rare human gene variant in ADHD, autism exposes fundamental sex differences

Bioengineer by Bioengineer
September 21, 2022
in Chemistry
Reading Time: 8 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The prevalence, age of onset, and clinical symptoms for virtually all neuropsychiatric disorders differ between men and women. Among the disorders with pronounced sex bias are Attention-Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD), where the ratio of males/females diagnosed is approximately 4 to 1. Whether this skewed ratio arises from roles played in brain development by sex-specific DNA sequences or hormones or reflects the way that biological mechanisms and environmental influences elicit behavioral patterns differently in males and females, remains an area of open investigation.

Study Uncovers Surprising Difference in Male and Female Dopamine Synapses Supporting Attention, Movement, Motivation and Pleasure

Credit: Florida Atlantic University

The prevalence, age of onset, and clinical symptoms for virtually all neuropsychiatric disorders differ between men and women. Among the disorders with pronounced sex bias are Attention-Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD), where the ratio of males/females diagnosed is approximately 4 to 1. Whether this skewed ratio arises from roles played in brain development by sex-specific DNA sequences or hormones or reflects the way that biological mechanisms and environmental influences elicit behavioral patterns differently in males and females, remains an area of open investigation.

Regardless of origin, altered behavior in these disorders signals a change in the function of key brain circuits wired up during development, refined throughout life, and coordinated through the actions of brain chemicals called neurotransmitters. One vital neurotransmitter that plays a key role in the behaviors altered by both ADHD and ASD is dopamine, whose powerful actions support motor initiation and coordination, motivation, reward and social behavior, as well as attention and higher cognitive function. Although dopamine-sensitive brain circuits engaged in these processes have been under scrutiny for decades, and in the case of ADHD, are the target of medications such as Adderall® and Ritalin®, the intrinsic sex-dependent differences in these pathways that could guide more precise diagnoses and treatments have only recently begun to be elucidated.

To better understand how dopamine levels at brain synapses are managed, neuroscientists from Florida Atlantic University, along with collaborators at the University of North Dakota School of Medicine and Health Sciences, have now added a significant piece to this puzzle by establishing key differences in the molecular dopamine disposal machinery in the brains of male and female mice.

The new research published in the journal Molecular Psychiatry and led by Randy Blakely, Ph.D., professor of biomedical science in FAU’s Schmidt College of Medicine and executive director of the FAU Stiles-Nicholson Brain Institute, provides new insight into how sex determines the mechanisms by which distinct synapses monitor and regulate dopamine signaling. Moreover, the impact the sex differences described is particularly pronounced when the mice express a human genetic variant found in boys with either ADHD or ASD.  

“Often, due to assumptions that sex hormone variation will cloud data interpretations, and that use of one sex will cut animal use and costs in half without a loss of key insights, many researchers using animal models to study brain disorders work chiefly with males, even more reasonable when modeling disorders that exhibit male bias,” said Blakely.  

In a prior study, looking for genetic changes in dopamine regulatory genes in children with ADHD, Blakely and his team identified a gene variant that alters the function of the dopamine transporter (DAT) in a peculiar way. Normally DAT acts to remove dopamine from synapses, acting like a nanoscale dopamine vacuum cleaner. When the DAT variant was expressed in cells, however, it “ran backward,” spitting out dopamine rather than efficiently removing it. After engineering the variant into the genome of mice, Blakely’s team found changes in behavior and drug responses predicted by this anomalous DAT behavior, with an emphasis on traits linked to pathways related to locomotor activation, habitual behavior and impulsivity. Notably, these studies were performed exclusively with male mutant mice.

Blakely and Adele Stewart, Ph.D., first author on the report, a research assistant professor of biomedical science in FAU’s Schmidt College of Medicine and a member of the FAU Stiles-Nicholson Brain Institute, recognized there was more to be done, particularly with respect to how females would handle the mutation. Would the DAT mutation impact the same brain regions and behaviors in females as it had done in males? The answer is a resounding no. Females show effects of the mutation in brain regions unaffected in males and vice versa. Further work revealed that this switch is due to a circuit flip in how brain pathways in males and females use a key DAT regulator protein to magnify the backwards activity of the transporter.

The behavioral consequences of this region-specific, sex-biased pattern of DAT regulation are profound, with the mutant DAT altering behaviors in a pattern unique to each sex. For example, mutant females appeared more anxious and had issues with novelty recognition compared to wildtype females. Males on the other hand are less social and display increased perseverative behavior, changes not seen in females.

“Our work clearly shows that the female mutant DAT mice are not ‘protected’ from the impact of the mutation, but rather, exhibit a unique set of behavioral changes linked to an ingrained, sex-biased architecture of the dopamine system,” said Stewart. “The same variant also has been found in two unrelated boys with ASD, a disorder that often also displays comorbid ADHD.”

Interestingly, the only reported clinical occurrence of the DAT variant in a female involved a diagnosis of bipolar disorder (BPD). Both the mania and depression associated with BPD have been suggested to be linked to altered dopamine signaling. Blakely’s group also has reported high impulsivity traits in a female carrier of the same mutation studied in this latest paper, suggesting that overlap of traits linked to dopamine can also occur between the sexes, or perhaps the forms of impulsivity (e.g. waiting versus action) may be involved.

A “resilience” framework often is used to explain discrepancies in the sex bias observed in neuropsychiatric disorders. However, recent evidence suggests that sex bias can be due, at least in part, to differences in symptomology and associated comorbidities and the resultant failure of current diagnostic instruments to assure identification of the same disorder in both sexes.

“While we understand that there are biological differences between rodent and human brains, studies like ours provide an important opportunity to explore biological mechanisms that contribute to sex differences in risk for neuropsychiatric diseases,” said Stewart. “What our study shows is that behavioral generalizations across the sexes may limit diagnosis of mental illness, particularly if one sex translates alterations into outward signs such as  hyperactivity and aggression versus more internal manifestations such as learning, memory and mood, even when the same molecular pathology is at work. What is more, our work supports the idea that treatment strategies should be cognizant of the sex-dependence of neuronal signaling mechanisms rather than assuming treatment that what is good for the goose is good for the gander. In fact, such therapies may either not be good for the gander at all, or good for a completely different kind of disorder.”

The research provides a clear example of how genetic changes can have sex-dependent effects on physiology and behavior, depending on whether other co-regulatory genes are naturally expressed by the same cells.

“Because the basis for the differential response to the DAT mutation is the presence or absence of DAT regulation in these two areas, the implications do not just apply to the few individuals with the genetic variant nor are limited to ADHD and ASD,” said Blakely. “Investigators exploring other disorders linked to altered dopamine signaling should consider whether the mechanism we have uncovered could drive sex-dependent features of these diseases. By extension, we now need to consider whether the mechanism we have uncovered contributes to sex-dependent ways in which dopamine signaling drives normal behavior.”    

 Study co-authors from FAU’s Department of Biomedical Science are Felix P. Mayer, Ph.D.; Raajaram Gowrishankar, Ph.D.; Gwynne L. Davis, Ph.D.; Lorena B. Areal, Ph.D.; Paul J. Gresch, Ph.D.; Rania M. Katamish; Samantha E. Stilley; Keeley Spiess; Maximilian J. Rabil; and Maureen K. Hahn, Ph.D. Also participating were Rodeania Peart and Faakhira A. Diljohn from FAU’s Harriet L. Wilkes Honors College as well as Roxanne A. Vaughan, Ph.D., University of North Dakota School of Medicine and Health Sciences.

The study was supported by the Postdoctoral Training Program in Functional Neurogenomics (MH065215) and NARSAD Young Investigator Grant from the BBRF awarded to Stewart; a Max Kade fellowship to Mayer and an NIH predoctoral fellowship (MH107132) to Davis; an NIH grant (2P20GM104360) awarded to Vaughan; and an NIH grant (MH086530) awarded to Blakely. Peart and Wiggins received grant support from FAU’s Office for Undergraduate Research and Inquiry.

– FAU –

About the FAU Stiles-Nicholson Brain Institute:

Inaugurated in 2016 under the leadership of executive director Randy D. Blakely, Ph.D., the FAU Stiles-Nicholson Brain Institute is a physical and programmatic embodiment of Florida Atlantic University’s Neuroscience Pillar, designated as one of four academic research investment areas in the 2015 FAU Strategic Plan with greatest potential to impact multiple dimensions of the university. The Brain Institute supports research, education and community outreach, with efforts spanning all of the FAU campuses. For more information, visit www.fau.due/ibrain. 

 

About the Charles E. Schmidt College of Medicine:

FAU’s Charles E. Schmidt College of Medicine is one of approximately 156 accredited medical schools in the U.S. The college was launched in 2010, when the Florida Board of Governors made a landmark decision authorizing FAU to award the M.D. degree. After receiving approval from the Florida legislature and the governor, it became the 134th allopathic medical school in North America. With more than 70 full and part-time faculty and more than 1,300 affiliate faculty, the college matriculates 64 medical students each year and has been nationally recognized for its innovative curriculum. To further FAU’s commitment to increase much needed medical residency positions in Palm Beach County and to ensure that the region will continue to have an adequate and well-trained physician workforce, the FAU Charles E. Schmidt College of Medicine Consortium for Graduate Medical Education (GME) was formed in fall 2011 with five leading hospitals in Palm Beach County. The Consortium currently has five Accreditation Council for Graduate Medical Education (ACGME) accredited residencies including internal medicine, surgery, emergency medicine, psychiatry, and neurology. The college’s vibrant research focus areas include healthy aging, neuroscience, chronic pain management, precision medicine and machine learning. With community at the forefront, the college offers the local population a variety of evidence-based, clinical services that treat the whole person. Jointly, FAU Medicine’s Primary Care practice and the Marcus Institute of Integrative Health have been designed to provide complete health and wellness under one roof.

 

About Florida Atlantic University:
Florida Atlantic University, established in 1961, officially opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 30,000 undergraduate and graduate students across six campuses located along the southeast Florida coast. In recent years, the University has doubled its research expenditures and outpaced its peers in student achievement rates. Through the coexistence of access and excellence, FAU embodies an innovative model where traditional achievement gaps vanish. FAU is designated a Hispanic-serving institution, ranked as a top public university by U.S. News & World Report and a High Research Activity institution by the Carnegie Foundation for the Advancement of Teaching. For more information, visit www.fau.edu.

 



Journal

Molecular Psychiatry

DOI

10.1038/s41380-022-01773-7

Method of Research

Experimental study

Subject of Research

Animals

Article Title

ehaviorally penetrant, anomalous dopamine efflux exposes sex and circuit dependent regulation of dopamine transporters

Article Publication Date

18-Sep-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Airborne microplastics (AMPs) influence cloud formation

Plastic cloud: New study analyzes airborne microplastics in clouds

September 27, 2023
Microresonator

Researchers fabricate chip-based optical resonators with record low UV losses

September 26, 2023

SRI spins off AI-powered drug discovery platform Synfini, Inc.

September 26, 2023

Genetically engineering associations between plants and nitrogen-fixing microbes could lessen dependence on synthetic fertilizer

September 26, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tiny CRISPR tool could help shred viruses

Plastic cloud: New study analyzes airborne microplastics in clouds

Golden Goose Award announces 2023 awardees for discoveries in DNA sequencing technique, a bacteria-inspired method that saves crops and chicken pedigree lines

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In