• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Raising plants to withstand climate change

Bioengineer by Bioengineer
December 3, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Proof of concept for changing mitochondrial respiration

IMAGE

Credit: Flinders University


Success with improving a model plant’s response to harsh conditions is leading plant molecular researchers to move to food crops including wheat, barley, rice and chickpeas.

Flinders and La Trobe University researchers in Australia are focusing on genes that encode antioxidant enzymes to minimise harmful oxidative responses in leaf cells to environmental stress. Experiments showed the plant with enhanced enzyme levels becoming more hardy and recovering more readily from exposure to drought and ‘high light’.

“With heatwaves, drought and salinity becoming more and more of an issue, plant biologists around the world are increasingly looking for ways to equip plants to be tolerant to multiple environmental stressors,” says Strategic Professor in Plant Biology David Day.

“Our research is proof of concept using the test plant Arabidopsis (Arabidopsis thaliana) that manipulating mitochondrial respiration is an important way to manage a plant’s response to abiotic stresses.”

The researchers focused on two enzymes, which act together to moderate oxidative damage in the leaves of the model plant.

“These proteins act on the cellular energy core or mitochondria to minimise damage caused by drought or other stressors,” says Dr Crystal Sweetman, one of the lead authors on the new paper in Plant Physiology.

“Therefore, plants bred to make more of these enzymes might be able to survive extreme heat or prolonged dry weather and have a better chance at producing food during bad seasons,” she says.

Flinders Professor Kathleen Soole, who is also president of the Australian Society of Plant Scientists, says the methodology has shown its value and can now be adapted for more complex grain and legume food staples.

“The research has shown that by affecting the metabolism of plant cells with two novel antioxidant enzymes allows them to recover better after exposure to drought,” Professor Soole says.

Flinders Associate Professor Colin Jenkins is keen for this work to be move to food crops like cereals. “This paves the way the selection of existing crop varieties with higher activities of these enzymes and for similar genetic manipulation of crop plants such as wheat and barley,” says plant molecular researcher Associate Professor Jenkins.

###

The paper, ‘AtNDB2 is the main external NADH dehydrogenase in mitochondria and is important for tolerance to environmental stress’ (2019) by C Sweetman, CD Waterman, BM Rainbird, PMC Smith, CD Jenkins, DA Day and KL Soole, has been published in Plant Physiology (American Society of Plant Biologists). DOI: 10.1104/pp.19.00877

Media Contact
David Day
[email protected]
61-882-015-205

Original Source

http://doi.org/10.1104/pp.19.00877

Related Journal Article

http://dx.doi.org/10.1104/pp.19.00877

Tags: AgricultureCell BiologyClimate ChangeFood/Food ScienceGeneticsHydrology/Water ResourcesMolecular BiologyPhysiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Long-Term Metabolic Surgery Shapes Innate Immune Cells

August 20, 2025
blank

Engineering Pathogen-Activated Autoactive NLRs for Immunity

August 20, 2025

Research Connects Teen Vaping to Higher Risk of Smoking and Health Complications

August 20, 2025

Revolutionizing Parkinson’s Treatment with PLGA Carriers

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Long-Term Metabolic Surgery Shapes Innate Immune Cells

Snake-Inspired Infrared Vision with CMOS Upconverters

Engineering Pathogen-Activated Autoactive NLRs for Immunity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.