• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, October 4, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Pumped to assist the heart with an artificial aorta

Bioengineer by Bioengineer
June 30, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2021 EPFL / Yoan Civet.

In January of this year, EPFL engineers announced in Advanced Science their concept of a novel cardiac assist device that is devoid of rigid metallic components. It consists of a soft, artificial muscle wrapped around the aorta that can constrict and dilate the vessel, ultimately enhancing the aorta’s natural function and aiding the heart to pump blood to the rest of the body.

Now, EPFL engineers led by Yves Perriard of the Laboratory of Integrated Actuators in collaboration with University of Bern, have successfully implanted their first artificial tubular muscle, in vivo, in a pig. During the 4-hour long operation, their cardiac assist device maintained 24 000 pulsations, of which 1500 were activated artificially by the augmented aorta.

The feat has unlocked a remaining 8 million CHFs out of 12 from the Werner Siemens Foundation to develop artificial muscles more generally.

“We’ve just achieved a world-first, proof-of-concept by successfully implanting our cardiac device in a live pig,” explains Perriard. “We are thrilled to be able to pursue the next round of projects thanks to the support of the Werner Siemens Foundation.”

In late 2017, the engineers were promised a donation of 12 million CHF from the Werner Siemens Foundation to set up a Center for Artificial Muscles at EPFL, to be delivered based on scientific advances such as this latest proof-of-concept.

The extra funds will be used for the next phases of the project, which include development of artificial muscles to address other human disorders such as artificial sphincters in collaboration with University of Bern that could resolve urinary incontinence for example, or to restore control of facial expression together with the University of Zurich.

Next-generation cardiac technology

Current cardiac technology requires connecting the heart directly to a pump, which means invasive heart surgery. Moreover, traditional pumps use rigid mechanical systems involving a propeller to get the blood flowing, but that also destroy red blood cells, making it an unsustainable solution.

The novel cardiac device proposed by the EPFL engineers does not tamper directly with the heart, but with the aorta instead. The concept involves placing a dielectric elastomer actuator (DEA) – a polymer that transforms electric energy into mechanical work – around the aorta near the aortic valve. By applying an electric voltage across their device, the actuator artificially constricts and dilates the aorta, acting like a tubular muscle that imitates the natural function of the aorta.

“Our artificial aorta mimics the way blood vessels constrict and relax to move blood through the circulatory system. The difference is that the aorta’s natural action is passive due to blood pressure, whereas our device is controlled by an external voltage,” explains Yoan Civet of EPFL’s Laboratory of Integrated Actuators. “With the help of our artificial aorta, the heart uses less energy to circulate the same volume of blood.”

Civet continues, “Our DEA is not a stand-alone pump. The heart maintains the DEA’s function by providing arterial pressure, and in return, the DEA assists the heart, making it more efficient at pumping blood.”

Perriard elaborates, “Our device is minimally invasive in that we do not touch the heart directly. In principle, it also preserves red blood cells due to its lack of rigid metallic components, contrary to traditional methods.”

Many challenges still ahead

Perriard and his team are excited about the success of their latest cardiac achievement but are also aware of the caveats.

For instance, the current version of their DEA placed on the aorta may have no metallic components, but it still contains plastic components that are rigid that are used for connecting the device to the aorta.

Also, the DEA should ideally be placed around the aorta but this has yet to be achieved. The engineers point out that they must find a solution that does not involve cutting the aorta to implant their device. “Perhaps the solution is to find a way to get the aorta to adhere to our device,” explains Perriard.

###

Media Contact
Hillary Sanctuary
[email protected]

Tags: BiotechnologyGrants/FundingHematologyRehabilitation/Prosthetics/Plastic SurgeryRobotry/Artificial IntelligenceSurgeryTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Proposed model for how human coronavirus HKU1 engages the host cell.

Revealing the ‘sweet secrets’ of coronavirus cell entry

October 4, 2023
Assembly Theory

New “Assembly Theory” unifies physics and biology to explain evolution and complexity

October 4, 2023

Female animals may learn mate preferences based on what sets other females’ choices apart from the crowd

October 3, 2023

Newly established Bulgarian Barcode of Life to support biodiversity conservation in the country

October 3, 2023
Please login to join discussion

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Case Western Reserve University and University Hospitals researchers awarded five-year, $11.2 million federal grant to study esophagus cancers

Revealing the ‘sweet secrets’ of coronavirus cell entry

These robots helped understand how insects evolved two distinct strategies of flight

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In