• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, February 2, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Pumped to assist the heart with an artificial aorta

Bioengineer by Bioengineer
June 30, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2021 EPFL / Yoan Civet.

In January of this year, EPFL engineers announced in Advanced Science their concept of a novel cardiac assist device that is devoid of rigid metallic components. It consists of a soft, artificial muscle wrapped around the aorta that can constrict and dilate the vessel, ultimately enhancing the aorta’s natural function and aiding the heart to pump blood to the rest of the body.

Now, EPFL engineers led by Yves Perriard of the Laboratory of Integrated Actuators in collaboration with University of Bern, have successfully implanted their first artificial tubular muscle, in vivo, in a pig. During the 4-hour long operation, their cardiac assist device maintained 24 000 pulsations, of which 1500 were activated artificially by the augmented aorta.

The feat has unlocked a remaining 8 million CHFs out of 12 from the Werner Siemens Foundation to develop artificial muscles more generally.

“We’ve just achieved a world-first, proof-of-concept by successfully implanting our cardiac device in a live pig,” explains Perriard. “We are thrilled to be able to pursue the next round of projects thanks to the support of the Werner Siemens Foundation.”

In late 2017, the engineers were promised a donation of 12 million CHF from the Werner Siemens Foundation to set up a Center for Artificial Muscles at EPFL, to be delivered based on scientific advances such as this latest proof-of-concept.

The extra funds will be used for the next phases of the project, which include development of artificial muscles to address other human disorders such as artificial sphincters in collaboration with University of Bern that could resolve urinary incontinence for example, or to restore control of facial expression together with the University of Zurich.

Next-generation cardiac technology

Current cardiac technology requires connecting the heart directly to a pump, which means invasive heart surgery. Moreover, traditional pumps use rigid mechanical systems involving a propeller to get the blood flowing, but that also destroy red blood cells, making it an unsustainable solution.

The novel cardiac device proposed by the EPFL engineers does not tamper directly with the heart, but with the aorta instead. The concept involves placing a dielectric elastomer actuator (DEA) – a polymer that transforms electric energy into mechanical work – around the aorta near the aortic valve. By applying an electric voltage across their device, the actuator artificially constricts and dilates the aorta, acting like a tubular muscle that imitates the natural function of the aorta.

“Our artificial aorta mimics the way blood vessels constrict and relax to move blood through the circulatory system. The difference is that the aorta’s natural action is passive due to blood pressure, whereas our device is controlled by an external voltage,” explains Yoan Civet of EPFL’s Laboratory of Integrated Actuators. “With the help of our artificial aorta, the heart uses less energy to circulate the same volume of blood.”

Civet continues, “Our DEA is not a stand-alone pump. The heart maintains the DEA’s function by providing arterial pressure, and in return, the DEA assists the heart, making it more efficient at pumping blood.”

Perriard elaborates, “Our device is minimally invasive in that we do not touch the heart directly. In principle, it also preserves red blood cells due to its lack of rigid metallic components, contrary to traditional methods.”

Many challenges still ahead

Perriard and his team are excited about the success of their latest cardiac achievement but are also aware of the caveats.

For instance, the current version of their DEA placed on the aorta may have no metallic components, but it still contains plastic components that are rigid that are used for connecting the device to the aorta.

Also, the DEA should ideally be placed around the aorta but this has yet to be achieved. The engineers point out that they must find a solution that does not involve cutting the aorta to implant their device. “Perhaps the solution is to find a way to get the aorta to adhere to our device,” explains Perriard.

###

Media Contact
Hillary Sanctuary
[email protected]

Tags: BiotechnologyGrants/FundingHematologyRehabilitation/Prosthetics/Plastic SurgeryRobotry/Artificial IntelligenceSurgeryTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

cotton microfiber

Looking beyond microplastics, Oregon State researchers find that cotton and synthetic microfibers impact behavior and growth of aquatic organisms

February 1, 2023
Dr. Haroon Mian

UBC Okanagan engineers examine drinking water management strategies

February 1, 2023

Molecular machines could treat fungal infections

February 1, 2023

Researcher takes another step toward discovering how a brain molecule could halt MS

February 1, 2023
Please login to join discussion

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How do you create buildings that can withstand the most extreme stress loads?

Genes responsible for coronary artery disease, world’s No. 1 killer, identified

Tuberculosis vaccine does not protect elderly against COVID-19

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In