• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, March 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Public willing to pay to reduce toxic algae — but maybe not enough

Bioengineer by Bioengineer
December 12, 2016
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

SAN FRANCISCO–Scientists have found good strategies for curbing the toxic algae blooms that have threatened some of the nation's water supplies. Farmers are willing to adopt these strategies. The American public is willing to help pay for them.

Problem solved? Not exactly.

A collaboration of universities and government agencies has identified three key agricultural management plans for curtailing harmful algal blooms.

They have also identified a looming funding gap for enacting those plans.

Researchers announced their first results this week, both at the American Geophysical Union (AGU) fall meeting and in a special issue of the Journal of Great Lakes Research.

Jay Martin, director of the Field to Faucet water quality program at The Ohio State University, leads the unusual project, which maps both the physical causes of toxic algae and the social landscape around the problem.

He and his team took as their starting point the recent binational agreement between the United States and Canada to cut phosphorus discharge into Lake Erie by 40 percent. They surveyed farmers and the public and built watershed models to explore different ways to keep phosphorus from reaching the lake, where it feeds toxic algae.

"The big question now is, can we reach our goal of 40 percent reduction, and how do we do it?" Martin said. "The hopeful news that we have found is that there are multiple ways to get there, and farmers are already adopting the very same agricultural practices that we found to be most promising. If they can continue to adopt these practices and even accelerate their adoption, we can reach the 40 percent reduction we need to have safe levels of algal blooms in Lake Erie, while preserving agricultural production."

The researchers have identified three key farming practices that could reduce algae levels: subsurface application of fertilizer and the use of cover crops and buffer strips. Cover crops are grown in fields that would otherwise go fallow to keep rain from washing phosphorus-laden fertilizer into the lake. Buffer strips are non-crop plants that surround fields and serve the same kind of purpose.

In their surveys of farmers in the Lake Erie watershed, the researchers found that 39 percent were already applying fertilizer below the soil surface; 22 percent were already growing cover crops; and 35 percent were already using buffer strips.

Each of those numbers, while encouraging, falls at least 20 percent short of where they need to be to reach phosphorus reduction goals, the study found.

Also encouraging: researchers found that Ohio residents were willing to help farmers pay for these practices. In the first survey of its kind, they asked residents to put a monetary value on reducing toxic algae in Lake Erie.

For example, they asked people how much reducing algae by 10 percent was worth. The answer that came back was quite specific: $150 million. And the answer was consistent, in that when researchers asked about reducing algae by 20 percent or 30 percent, respondents placed a $150 million value on every additional 10 percent. A 20 percent reduction was worth $300 million, and so on. People said they were willing to pay slightly higher food prices, or even a special income tax or sales tax that would benefit farmers to make the changes happen.

Reducing algae would likely carry a higher price tag, however: "While it looks like the reduction is possible, it will be a heavy lift," Martin said.

In fact, $150 million was the preliminary estimate that Ohio State researchers made in a study with the Nature Conservancy earlier this year–but for annual mitigation of phosphorus runoff in only the most critical areas. That project was led by Stuart Ludsin, an associate professor of evolution, ecology and organismal biology and co-director of Ohio State's Aquatic Ecology Laboratory.

Still, the payoff for reducing phosphorus goes beyond Lake Erie, Ludsin said.

"If done correctly, agricultural conservation practices aimed at improving water quality in Lake Erie can also boost the health of stream-fish communities throughout the watershed," he added.

Lake Erie is at the center of toxic algae research today, because it contains 50 percent of all the fish in the Great Lakes, supports a $1.7 billion tourism industry and provides drinking water for 11 million people. But the same problems are beginning to plague areas of the Mississippi Valley and coastal Florida, as well as coastlines around the world.

Martin and his team are presenting their findings at the AGU session "New Frontiers in Water Resources: Achieving Water Resource Security in Times of Climate Change, Urbanization, and Agricultural Expansion" co-organized by Noel Aloysius, who is also involved in the study. The session also highlights some of the promising strategies being used elsewhere.

Among them: Michele Reba, a hydrologist with USDA, is testing ways for farmers in the Mississippi Valley to capture and reuse their irrigation water, which keeps fertilizer nutrients on the farm.

Restoring lost wetlands–or creating new ones–is another strategy that is proving successful in the Florida Everglades. There, William Mitsch, director of Everglades Wetland Research Park at Florida Gulf Coast University, has found that tuning the plant and soil composition of wetlands can nearly eliminate all phosphorus runoff into surrounding waters.

In its special issue on Lake Erie, the Journal of Great Lakes Research explores these and other topics, including the roles of sediment, plankton, and climate change in promoting algae. More than a dozen papers are available as open access content online.

###

Co-authors of the AGU presentation include Aloysius, Margaret Kalcic, Robyn S. Wilson and Brian Roe of Ohio State; Donald Scavia of the University of Michigan and Gregory Howard of East Carolina University. The research project on mitigating phosphorus in Lake Erie is funded by the National Science Foundation and the Fred A. and Barbara M. Erb Family Foundation. USDA's Natural Resources Conservation Service funded the Ohio State-Nature Conservancy project.

Contacts:

Jay Martin, 614-247-6133; [email protected]
Noel Aloysius; [email protected]
Stuart Ludsin, 614-292-1613; [email protected]
Michele Reba, 870-819-2708; [email protected]
William Mitsch, 239-325-1365; [email protected]

Written by Pam Frost Gorder, 614-292-9475; [email protected]

Editor's note: for information about the Journal of Great Lakes Research, contact editor Robert Hecky at 204-582-0288 or [email protected]

Media Contact

Pam Frost Gorder
[email protected]
@osuresearch

http://news.osu.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

High-performance transparent-flexible electronic devices based on copper-graphene nanowire

DGIST Professor Yoonkyu Lee’s research team has developed a high-performance transparent-flexible electronic device based on a copper-graphene nanowire synthesized by scintillation

March 31, 2023
2023 DGIST Commencement

DGIST held a graduation ceremony for the first half of 2023 (Feb.)

March 31, 2023

Do we understand the flickering flames?

March 31, 2023

Can we connect to a virtual world as in the movie “The Matrix”? Microrobot technology has been developed for externally connecting in vivo neural networks.

March 31, 2023
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    67 shares
    Share 27 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Extinction of steam locomotives derails assumptions about biological evolution

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

DGIST Professor Yoonkyu Lee’s research team has developed a high-performance transparent-flexible electronic device based on a copper-graphene nanowire synthesized by scintillation

DGIST held a graduation ceremony for the first half of 2023 (Feb.)

Do we understand the flickering flames?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In