• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, January 22, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Proverbial wolf can’t blow down modern timber high-rises, says UBCO researcher

Bioengineer by Bioengineer
December 3, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tall mass-timber buildings are a safe and sustainable alternative for high-rise construction

IMAGE

Credit: UBC Okanagan

With an increasing demand for a more sustainable alternative for high-rise construction, new research from UBC Okanagan, in collaboration with Western University and FPInnovations, points to timber as a sustainable and effective way to make tall, high-density, and renewable buildings.

“Many people have trouble imagining a timber high-rise of up to 40 storeys when we’re so used to seeing concrete and steel being the norm in today’s construction,” explains Matiyas Bezabeh, a doctoral candidate at the UBCO School of Engineering. “But we’re starting to demonstrate that the proverbial wolf can’t knock over the pig’s wooden building when they’re built using modern techniques.”

Bezabeh and his supervisors, Professors Solomon Tesfamariam from UBC Okanagan and Girma Bitsuamlak from Western University, conducted extensive wind testing on tall mass-timber buildings of varying height between 10 and 40-storeys at Western University’s Boundary Layer Wind Tunnel Laboratory.

“We found that the studied buildings up to 20-storeys, using today’s building codes, can withstand high-wind events,” says Bezabeh. “However, in the cases we studied, once we get up to 30 and 40 storeys, aerodynamic and structural improvements would be needed to address excessive wind-induced motion–something that would impact the comfort of those inside.

In 2020, the National Building Code of Canada doubled the height allowance of timber buildings from six storeys to twelve. The 2021 edition of the International Building Code (IBC) will include provisions to allow mass-timber buildings up to 18-stories.

“What’s exciting about our findings is that while additional engineering is required for these taller timber buildings, the problems are absolutely solvable, which opens the door to new architectural possibilities,” adds Tesfamariam. “And with a shift towards sustainable urbanization across North America and Europe, the use of timber as a structural material addresses both the issues of sustainability and renewability of resources.”

Tesfamariam, an engineering professor at UBCO, also sits on the Systems Design and Connections Subcommittee of the Canadian Wood Council, which is responsible for setting building code and engineering standards nationally.

According to Bezabeh, there is a growing acceptance of using mass-timber products such as cross-laminated timber because of its higher strength-to-weight ratio, aesthetics, and construction efficiency.

“We hope our research will continue the design and structural innovation in this area and perhaps one day soon many of us will be living in mass-timber high-rise apartments.”

The School of Engineering offers a new course in advanced design of timber structures, led by Tesfamariam, geared for students and industry professionals interested in understanding timber products, design of timber structural elements, the fundaments of structural dynamics for timber buildings, and the design of low-, mid- and high-rise timber and timber-hybrid buildings.

###

The research is published in the Journal of Structural Engineering.

Media Contact
Nathan Skolski
[email protected]

Original Source

https://news.ok.ubc.ca/2020/12/03/proverbial-wolf-cant-blow-down-modern-timber-high-rises-says-ubco-researchers

Related Journal Article

http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0002746

Tags: Civil EngineeringIndustrial Engineering/ChemistryTechnology/Engineering/Computer ScienceUrbanization
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Astronomers discover first cloudless, Jupiter-like planet

January 21, 2021
IMAGE

Bringing atoms to a standstill: NIST miniaturizes laser cooling

January 21, 2021

Combining best of both worlds for cancer modeling

January 21, 2021

Squeezing a rock-star material could make it stable enough for solar cells

January 21, 2021
Next Post
IMAGE

What makes psoriasis sore: Novel role of immune system in the disease

IMAGE

Scientists peer into the 3D structure of the Milky Way

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    65 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

GeneticsPublic HealthClimate ChangecancerMaterialsBiologyCell BiologyMedicine/HealthTechnology/Engineering/Computer ScienceInfectious/Emerging DiseasesEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Why so few black skiers and ballet dancers?
  • Navigating uncertainty: Why we need decision theory during a pandemic
  • Combined river flows could send up to 3 billion microplastics a day into the Bay of Bengal
  • New combination of immunotherapies shows great promise for treating lung cancer
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In