• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 28, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Genetics

Protein SIRT5 linked to healthy heart function

Bioengineer by Bioengineer
May 1, 2016
in Genetics
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ITHACA, N.Y. – The human heart is a remarkable muscle, beating more than 2 billion times over the average life span.

But the heart’s efficiency can decrease over time. One major contributor to this decreased function is cardiac hypertrophy – a thickening of the heart muscle, resulting in a decrease in the size of the left and right ventricles. This makes the heart work harder and pump less blood per cycle than a healthy heart.

Cornell researchers, working in collaboration with scientists in Switzerland, have identified a strong connection between a protein, SIRT5, and healthy heart function. SIRT5 has the ability to remove a harmful protein modification known as lysine succinylation, which robs the heart of its ability to burn fatty acids efficiently to generate the energy needed for pumping.

“Our research suggests that perhaps one way to improve heart function is to find a way to improve SIRT5 activity,” said Hening Lin, professor of chemistry and chemical biology, who co-wrote the article published online this month in the Proceedings of the National Academy of Sciences.

SIRT5 is one of a class of seven proteins called sirtuins that have been shown to influence a range of cellular processes. According to Sushabhan Sadhukhan, a postdoctoral fellow in Lin’s lab and lead author of the paper, most research on laboratory mice into sirtuin activity has focused on the liver, as opposed to the heart, due to the size of the liver and ease of obtaining tissue.

Lin’s lab tested mouse tissue from five locations (heart, liver, kidney, brain, muscle) and found that protein lysine succinylation occurs to the greatest extent in the heart. The testing involved mice that had SIRT5 deleted.

The removal of SIRT5 resulted in reduced activity of ECHA, a protein involved in fatty acid oxidation, and decreased levels of adenosine triphosphate (ATP), which stores and transfers chemical energy within cells.

The effect of SIRT5 removal on heart function was even more pronounced as the mice aged. The researchers performed echocardiography on 8-week-old mice, with some reduced cardiac function observed. The mice were tested again at 39 weeks, and they showed hallmarks of cardiac hypertrophy – increased heart weight and left ventricular mass, along with reductions in both the shortening and ejection fractions of the heart.

The group’s findings could spawn new methods for the preservation of heart health and extension of healthy life, which could have significant implications for human health.

According to the Centers for Disease Control and Prevention, heart disease is the leading cause death among both men and women, with more than 600,000 people in the U.S. dying from it annually.

“The identification of this new role of SIRT5 in cardiomyopathy assigns an important role of this ‘druggable’ enzyme in one of the major cardiac diseases,” said Swiss collaborator Johan Auwerx, of the Ecole Polytechnique Fédérale de Lausanne. “It can be expected that pharmacological interference with these pathways will lead to new therapies for cardiomyopathy that, as such, can extend healthy life span.”

###

This work was supported by grants from the National Institutes of Health and a grant from the Swiss National Science Foundation.

Media Contact

Daryl Lovell
[email protected]
607-592-3925
@cornell

http://pressoffice.cornell.edu

The post Protein SIRT5 linked to healthy heart function appeared first on Scienmag.

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Amino acid recycling in cells: Autophagy helps cells adapt to changing conditions

December 10, 2020
IMAGE

Cataloging nature’s hidden arsenal: Viruses that infect bacteria

December 10, 2020

Within a hair’s breadth–forensic identification of single dyed hair strand now possible

December 9, 2020

£1m step closer to understanding genetic diseases

December 9, 2020

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    638 shares
    Share 255 Tweet 160
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceMedicine/HealthcancerInfectious/Emerging DiseasesEcology/EnvironmentMaterialsCell BiologyClimate ChangeBiologyGeneticsPublic HealthChemistry/Physics/Materials Sciences

Recent Posts

  • Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI
  • When foams collapse (and when they don’t)
  • UTA researcher explores effects of trauma at the cellular, tissue levels of the brain
  • Picture books can boost physical activity for youth with autism
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In