• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, May 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Protein associated with many diseases fully visualized for first time

Bioengineer by Bioengineer
October 3, 2019
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New drugs could be inspired by understanding how P2X7 protein receptor works

IMAGE

Credit: Oregon Health & Science University

For the first time, researchers have observed at the molecular level how a protein associated with numerous health problems works.

The discovery – which could one day inspire new drugs to treat inflammation, coronary artery disease, cancer, multiple sclerosis and more – was published today in the journal Cell.

Oregon Health & Science University research assistant Alanna McCarthy, B.S., and OHSU researcher Steven Mansoor, M.D., Ph.D., used cryoelectron microscopy to obtain the 3D structure of a protein receptor and observe its inner workings. The protein receptor they studied is a cellular membrane protein that allows electrically charged sodium and calcium particles to enter and trigger changes in a cell.

They specifically studied the P2X7 receptor, a subtype of the ligand-gated ion channel P2X family that has been associated with inflammation, plaque buildup in arteries, cancer metastasis, neurological conditions and more.

P2X7 is unusual because once activated, its channel remains open indefinitely, continually allowing charged particles to enter a cell and trigger the signaling pathways of inflammation, ultimately leading to cell death. Such signaling behavior could contribute to the long list of ailments that are associated with the receptor.

Unlike previous efforts to image the P2X7 receptor, the team’s cryo-EM imaging approach allowed them to capture the protein receptor in its entirety.

This enabled them to visualize the parts of the receptor that sit inside the cell. As a result, they were able to directly observe how these parts are modified with fatty acid molecules called palmitoyl groups. When Mansoor and his colleagues removed these groups, they found the receptor no longer stayed open indefinitely, shutting down its ability to trigger signaling. They also unexpectedly discovered a guanosine nucleotide was bound to P2X7 inside the cell.

“Researchers have known ligand-gated ion channels are modified by palmitoyl groups, but we had never directly observed it until now,” said Mansoor, an assistant professor of medicine (cardiovascular) in the OHSU School of Medicine and Knight Cardiovascular Institute. “Our finding could be used as a model of how palmitoylation modifies other ion channels.”

Mansoor and his team will further explore the roles that palmitoyl groups and the guanosine nucleotide play in P2X7 intra-cellular signaling, their potential impact on human health, and how they could be targeted to treat health conditions associated with the receptor.

###

This research was supported by the National Heart, Lung and Blood Institute (grant K99HL138129). The team used microscopes at the Pacific Northwest Center for Cryo-EM, which OHSU and Pacific Northwest National Laboratory established in 2018 with support of the National Institutes of Health, and conducted research in the OHSU Vollum Institute lab of Eric Gouaux, Ph.D., who is supported by the Howard Hughes Medical Institute.

REFERENCE: Alanna E. McCarthy, Craig Yoshioka, Steven E. Mansoor, Full-length P2X7 structures reveal how palmitoylation prevents channel desensitization, Cell, 11 a.m. ET Oct. 3, 2019, DOI: 10.1016/j.cell.2019.09.017, https://www.cell.com/cell/fulltext/S0092-8674(19)31068-2

Related OHSU News Stories:

* 9/14/16 OHSU News Hub story, “Study in Nature Reveals News Molecular Insight,” https://news.ohsu.edu/2016/09/15/study-in-nature-reveals-new-molecular-insight

* 5/15/18 OHSU News Hub story, “OHSU one of three centers selected to study cells at atomic level,” https://news.ohsu.edu/2018/05/15/ohsu-one-of-three-centers-selected-to-study-cells-at-atomic-level

Other Links:

* Steven Mansoor, M.D., Ph.D., https://www.ohsu.edu/people/steven-mansoor-e/780CA0EF0BCAFF2EECC24C8A1E2BF827

* OHSU Foundation Onward Magazine, July 1, 2017, “Up-and-comers: Steven Mansoor,” https://www.onwardohsu.org/blog/detail/and-comers-steven-mansoor

Media Contact
Franny White
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.cell.2019.09.017

Tags: BiologycancerCardiologyCell BiologyMedicine/HealthneurobiologyPharmaceutical Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Quantum Interometer

Illinois Physicists Harness Quantum Light Properties to Create Revolutionary Measurement Tool

May 22, 2025
A single frame from a simulation of an industrial plasma

New Breakthrough Accelerates and Enhances Accuracy in Plasma Simulation for Computer Chip Manufacturing

May 22, 2025

Revolutionizing Nuclear Physics: Introducing the New Standards

May 22, 2025

Precise Determination of the 63Cu(γ, n)62Cu Reaction Cross Section Using Quasi-Monoenergetic Gamma-Ray Beams

May 22, 2025
Please login to join discussion

POPULAR NEWS

  • Effects of a natural ingredients-based intervention targeting the hallmarks of aging on epigenetic clocks, physical function, and body composition: a single-arm clinical trial

    Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    91 shares
    Share 36 Tweet 23
  • Analysis of Research Grant Terminations at the National Institutes of Health

    79 shares
    Share 32 Tweet 20
  • Health Octo Tool Links Personalized Health, Aging Rate

    68 shares
    Share 27 Tweet 17
  • Universe Fades Faster Than Expected—Yet Still Over Vast Timescales

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Stem Cell-Derived Islet Survival in Hypoxia

Assessing Breast Cancer Care Quality in Iran

Muscle Quality: A Potential Early Indicator of Cognitive Decline

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.