• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Proteasome inhibitors show promise for drug-resistant malaria

Bioengineer by Bioengineer
June 6, 2019
in Immunology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Stokes, et al. (2019)

Proteasome inhibitors have significant promise as components of novel combination therapies to treat multidrug-resistant malaria, according to a study published June 6 in the open-access journal PLOS Pathogens by David Fidock, Caroline Ng, and Barbara Stokes of Columbia University Irving Medical Center, Matthew Bogyo of Stanford University School of Medicine, and colleagues.

The spread of drug-resistant malaria, caused by the protozoan parasite Plasmodium falciparum, across Southeast Asia highlights the urgent need to develop new treatment options with compounds that are not susceptible to existing mechanisms of antimalarial drug resistance. Recent work has identified the P. falciparum proteasome – a protein complex that degrades unneeded or damaged proteins – as a promising drug target. In the new study, the researchers characterized the antimalarial activity of two P. falciparum-selective proteasome inhibitors – the covalent peptide vinyl sulfones WLL-vs (WLL) and WLW-vs (WLW).

The inhibitors exhibited potent antimalarial activity against drug-resistant P. falciparum early ring-stage parasites that are traditionally difficult to treat. Moreover, parasites did not readily acquire resistance to these proteasome inhibitors, unlike many advanced antimalarial candidates. No parasites were observed to be cross-resistant to both compounds; in fact, partial resistance to one compound often created hypersensitivity to the other. These data were explained by activity-based profiling of the proteasome complex and molecular modeling of its interactions with these inhibitors. The findings also revealed potent synergy between these proteasome inhibitors and multiple, chemically diverse classes of antimalarial agents. According to the authors, these results underscore the potential of targeting the Plasmodium proteasome with small molecule inhibitors as a means of combating multidrug-resistant malaria.

###

Research Article

Funding: Funding for this work was provided in part by the National Institutes of Health: R21 AI127581 (to M.B. and D.A.F.), R01 AI109023 and AI124678 (to D.A.F.), and R21 AI137900 (to C.L.N.). B.H.S. gratefully acknowledges support from T32 AI106711 (PD: D. Fidock). M.R.L. gratefully acknowledges support from T32 GM008666 (PD: L. Goldstein). P.A. and P.C.A.dF. acknowledge support from the UK Medical Research Council: grant MC_UP_1201/5. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Competing Interests: The authors have declared that no competing interests exist.

Citation: Stokes BH, Yoo E, Murithi JM, Luth MR, Afanasyev P, da Fonseca PCA, et al. (2019) Covalent Plasmodium falciparum-selective proteasome inhibitors exhibit a low propensity for generating resistance in vitro and synergize with multiple antimalarial agents. PLoS Pathog 15(6): e1007722. https://doi.org/10.1371/journal.ppat.1007722

Image Credit: Stokes, et al. (2019)

Image Caption: In silico modeling of the Plasmodium falciparum 20S proteasome bound by the covalent parasite-selective WLL peptide-based inhibitor. (A) Docking of WLL into the wild-type b5 site of the cryo-electron microscopy-derived 20S parasite proteasome model. The b5 and b6 subunits are in light blue and dark blue, respectively. (B) Molecular dynamic simulations illustrate how the b5 A20S mutation affords low-level resistance to WLL by reducing compound binding to the b5 active site. Arrow highlights the WLL P3 tryptophan residue.

Author Affiliations:

Columbia University Medical Center

Stanford University

University of California San Diego

Cambridge Biomedical Campus

In your coverage please use this URL to provide access to the freely available paper: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1007722

Media Contact
David Fidock
[email protected]

Original Source

http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1007722

Related Journal Article

http://dx.doi.org/10.1371/journal.ppat.1007722

Tags: BiologyDisease in the Developing WorldEntomologyInfectious/Emerging DiseasesMedicine/HealthParasitology
Share14Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    72 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bacterial Diversity Across Developmental Stages of Anopheles subpictus

CT Scans: Raised Arms Improve Clavicle Age Estimates

Nigella sativa Nanoparticles: Fighting Bacteria, Oxidants, and Mosquitoes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.