• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, March 4, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Proposing a new drug to treat tuberculosis utilizing state-of-the-art computer simulations

Bioengineer by Bioengineer
January 19, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In silico drug design for inhibiting the cell division of Mycobacterium tuberculosis and suppressing its growth based on high-precision molecular simulations

IMAGE

Credit: COPYRIGHT (C) TOYOHASHI UNIVERSITY OF TECHNOLOGY. ALL RIGHTS RESERVED.

Overview:

The research team of the Department of Computer Science and Engineering at the Toyohashi University of Technology and the Institute of Food Biotechnology and Genomics at the National Academy of Sciences of Ukraine have proposed a new drug to treat tuberculosis (TB), utilizing the state-of-the-art molecular simulations. This drug may inhibit the cell division of Mycobacterium tuberculosis (M. tuberculosis) and suppress its growth. In addition, because this drug acts on the enzymes secreted by M. tuberculosis instead of acting on M. tuberculosis itself, M. tuberculosis has very little chance of mutation and develops no drug resistance. Therefore, it is expected that this drug will lead to a novel drug that will keep its effectiveness for a long time.

Details:

Currently, the global spread of COVID-19 caused by the novel coronavirus has become a major social issue. Similarly, TB caused by M. tuberculosis is also one of the most dangerous infectious diseases in the world to date, and various drugs used to treat TB have been developed. However, as the M. tuberculosis easily mutates, its new mutants have a possibility to retain a resistance against the existing drugs, resulting in making them ineffective. This fact is a major bottleneck to further development of TB drugs.

Therefore, to prevent the occurrence of this drug resistance, drugs that act on the enzymes secreted by M. tuberculosis instead of M. tuberculosis itself are being developed. In this research, we targeted the cytoskeletal protein FtsZ, which is essential for M. tuberculosis to perform cell division, and by inhibiting that function, we aimed to develop a new drug that inhibits the cell division of M. tuberculosis and suppresses its growth. For this purpose, we used the state-of-the-art and high-precision molecular simulation method developed by our research group to analyze the binding properties between FtsZ and the various compounds that are drug candidates. Based on the results simulated, we proposed the compound that binds more strongly to FtsZ as a new drug to treat TB.

Development Background:

Master’s student and lead author of this paper, Shohei Yamamoto, reflects on that time below. “Because the FtsZ protein targeted in this research has many positions where compounds can bind to it, we had difficulty identifying the positions of the FtsZ protein in which the compounds considered as drug candidates would bind most strongly in the molecular simulation. I think that being able to solve this matter led to the proposal of a therapeutic drug for TB.”

In addition, the research team’s leader, Associate Professor Noriyuki Kurita, recounts how the research began below. “This research is a collaboration with my old friends at the National Academy of Sciences of Ukraine. I remember about five years ago, when I visited a laboratory in Kyiv, Ukraine and was first introduced to a protein called FtsZ, I answered that its structure was too complex and that it would be difficult to investigate its binding properties with drug-like compounds in our molecular simulations. However, my friends asked me several times to start the calculations, and finally our intimate collaboration study started. I think that Eastern European researchers tend to thoroughly pursue difficult research themes even if it takes a long time, and that there are many things that we could learn from how they proceed with their research.”

Future Outlook:

Currently, we are requesting that the compound proposed in this paper be synthesized in a Ukrainian laboratory and the effects be investigated by cell experiments, but due to the economic situation of the other party, it seems that this will take time to realize. In addition, the molecular simulation method used in this research can be applied to other proteins, and we are currently conducting calculations with the aim of proposing new inhibitors for the proteins of the novel coronavirus.

This research was carried out through an international internship program supported by the Japan Student Services Organization (JASSO), student exchange and research exchange programs between the Toyohashi University of Technology and the Institute of Food Biotechnology and Genomics at the National Academy of Sciences of Ukraine. We would like to thank Professor Yaroslav Blume, Professor Sergey Shulga, and Doctor Karpov Pavel of the National Academy of Sciences of Ukraine for providing valuable information in advancing this joint research.

###

Reference:

“Design of potent inhibitors against bacterial cell-division protein FtsZ: molecular docking and ab initio molecular orbital calculations”, Yamamoto, S.; Saito, R.; Nakamura, S.; Sogawa, H.; Karpov, P.; Shulga, S.; Blume, Y.; Kurita, N., Antibiotics, 2020, 9, 846; doi:10.3390/antibiotics9120846.

“Binding sites of Zantrin inhibitors to the bacterial cell division protein FtsZ: molecular docking and ab initio molecular orbital calculations”, Sogawa, H.; Sato, R.; Suzuki, K.; Tomioka, S.; Shinzato, T.; Karpov, P.; Shulga, S.; Blume, Y.; Kurita, N., Chemical Physics, 2020, 530, 110603.

Media Contact
Yuko Ito
[email protected]

Related Journal Article

http://dx.doi.org/10.3390/antibiotics9120846

Tags: BiochemistryBioinformaticsBiologyBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyComputer ScienceMolecular BiologyTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Nature: new compound for male contraceptive pill

March 3, 2021
IMAGE

Conquering the timing jitters

March 3, 2021

Color blindness-correcting contact lenses

March 3, 2021

Humans drive most of the ups and downs in freshwater storage at Earth’s surface

March 3, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    663 shares
    Share 265 Tweet 166
  • People living with HIV face premature heart disease and barriers to care

    83 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Infectious/Emerging DiseasesTechnology/Engineering/Computer SciencePublic HealthMedicine/HealthBiologyMaterialsClimate ChangeCell BiologyGeneticscancerEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Gender assumptions harm progress on climate adaption and resilience
  • Researchers urge greater awareness of delayed skin reactions to Moderna COVID-19 vaccine
  • Mobile app helps young adults talk with friends about risky drug, alcohol use
  • MDI Biological Laboratory receives funding to address arsenic threat
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In