• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Processed diets might promote chronic infections that can lead to disorders such as diabetes

Bioengineer by Bioengineer
April 28, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Georgia State University

ATLANTA–Processed diets, which are low in fiber, may initially reduce the incidence of foodborne infectious diseases such as E. coli infections, but might also increase the incidence of diseases characterized by low-grade chronic infection and inflammation such as diabetes, according to researchers in the Institute for Biomedical Sciences at Georgia State University.

This study used mice to investigate how changing from a grain-based diet to a highly processed, high-fat Western style diet impacts infection with the pathogen Citrobacter rodentium, which resembles Escherichia coli (E. coli) infections in humans. The findings are published in the journal PLOS Pathogens.

Gut microbiota, the microorganisms living in the intestine, provide a number of benefits, such as protecting a host from infection by bacterial pathogens. These microorganisms are influenced by a variety of environmental factors, especially diet, and rely heavily on complex carbohydrates such as fiber.

The Western-style diet, which contains high amounts of processed foods, red meat, high-fat dairy products, high-sugar foods and pre-packaged foods, lacks fiber, which is needed to support gut microbiota. Changes in dietary habits, especially a lack of fiber, are believed to have contributed to increased prevalence of chronic inflammatory diseases such as inflammatory bowel disease, metabolic syndrome and cancer.

In this study, the researchers found switching mice from a standard grain-based rodent chow to a high-fat, low-fiber Western-style diet resulted in a rapid reduction in the number of gut bacteria. Mice fed the Western-style diet were frequently unable to clear the pathogen Citrobacter rodentium from the colon. They were also prone to developing chronic infection when re-challenged by this pathogen.

The researchers conclude the Western-style diet reduces the numbers of gut bacteria and promotes encroachment of microbiota into the intestine, potentially influencing immune system readiness and the body’s defense against pathogenic bacteria.

“We observed that feeding mice a Western-style diet, rather than standard rodent grain-based chow, altered the dynamics of Citrobacter infection, reducing initial colonization and inflammation, which was surprising. However, mice consuming the Western-style diet frequently developed persistent infection that was associated with low-grade inflammation and insulin resistance,” said Dr. Andrew Gewirtz, senior co-author of the study and professor in the Institute for Biomedical Sciences. “These studies demonstrate potential of altering microbiota and their metabolites by diet to impact the course and consequence of infection following exposure to a gut pathogen.”

“We speculate that reshaping gut microbiota by nutrients that promote beneficial bacteria that out-compete pathogens may be a means of broadly promoting health,” said Dr. Jun Zou, senior co-author of the study and assistant professor in the Institute for Biomedical Sciences at Georgia State.

###

Additional co-authors of the study include Junqing An, Xu Zhao, Yanling Wang and Juan Noriega.

The study was funded by the National Institutes of Health and the American Diabetes Association.

To read the study, visit https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009497.

Media Contact
LaTina Emerson
[email protected]

Original Source

https://news.gsu.edu/2021/04/28/processed-diets-might-promote-chronic-infections-that-can-lead-to-disorders-such-as-diabetes-biomedical-sciences-researchers-find/

Tags: DiabetesGastroenterologyInfectious/Emerging DiseasesMedicine/HealthMetabolism/Metabolic DiseasesMicrobiologyNutrition/Nutrients
Share12Tweet8Share2ShareShareShare2

Related Posts

NICU Capacity Strain Tied to Newborn Mortality Risk

October 20, 2025

Oxytocin Controls Heart Rate via Brain Pathway

October 20, 2025

AASM Reveals Finalists for Inaugural Sleep Medicine Disruptors Innovation Award

October 20, 2025

New White Paper Calls on Policymakers to Update Practice Laws and Unlock AI’s Full Potential in Healthcare

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1265 shares
    Share 505 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    298 shares
    Share 119 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    127 shares
    Share 51 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NICU Capacity Strain Tied to Newborn Mortality Risk

Identifying Superior Walnut Genotypes in the Himalayas

Oxytocin Controls Heart Rate via Brain Pathway

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.